Superconducting quantum interference devices: State of the art and applications

Superconducting quantum interference devices (SQUIDs) are sensitive detectors of magnetic flux. A SQUID consists of a superconducting loop interrupted by either one or two Josephson junctions for the RF or dc SQUID, respectively. Low transition temperature (T/sub c/) SQUIDs are fabricated from thin films of niobium. Immersed in liquid helium at 4.2 K, their flux noise is typically 10/sup -6//spl Phi//sub 0/ Hz/sup -1/2/, where /spl Phi//sub 0//spl equiv/h/2e is the flux quantum. High-T/sub c/ SQUIDs are fabricated from thin films of YBa/sub 2/Cu/sub 3/O/sub 7-x/, and are generally operated in liquid nitrogen at 77 K. Inductively coupled to an appropriate input circuit, SQUIDs measure a variety of physical quantities, including magnetic field, magnetic field gradient, voltage, and magnetic susceptibility. Systems are available for detecting magnetic signals from the brain, measuring the magnetic susceptibility of materials and geophysical core samples, magnetocardiography and nondestructive evaluation. SQUID "microscopes" detect magnetic nanoparticles attached to pathogens in an immunoassay technique and locate faults in semiconductor packages. A SQUID amplifier with an integrated resonant microstrip is within a factor of two of the quantum limit at 0.5 GHz and will be used in a search for axions. High-resolution magnetic resonance images are obtained at frequencies of a few kilohertz with a SQUID-based detector.

[1]  Dietmar Drung,et al.  Integrated YBa2Cu3O7−x magnetometer for biomagnetic measurements , 1996 .

[2]  H. Huggins,et al.  High quality refractory Josephson tunnel junctions utilizing thin aluminum layers , 1983 .

[3]  Theodore A. Buchhold,et al.  Applications of Superconductivity , 1960 .

[4]  Michael Faley,et al.  Low noise HTS dc-SQUID flip-chip magnetometers and gradiometers , 2001 .

[5]  M. Muck,et al.  Progress in RF-SQUIDs , 1993, IEEE Transactions on Applied Superconductivity.

[6]  A Macovski,et al.  Novel approaches to low‐cost MRI , 1993, Magnetic resonance in medicine.

[7]  Lutz Trahms,et al.  Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles , 1999 .

[8]  John Clarke,et al.  Nuclear quadrupole resonance detected at 30 MHz with a dc superconducting quantum interference device , 1985 .

[9]  Jiri Vrba,et al.  Squid Gradiometers in Real Environments , 1996 .

[10]  J. Hutchison,et al.  Use of a DC SQUID receiver preamplifier in a low field MRI system , 1995, IEEE Transactions on Applied Superconductivity.

[11]  John Clarke,et al.  High-transition-temperature superconducting quantum interference devices , 1999 .

[12]  A. Matlashov,et al.  A Low-Noise, Integrated DC SQUID Magnetometer for Applications in Biomagnetism , 2000 .

[13]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[14]  R. Cantor,et al.  Low‐noise YBa2Cu3O7−δ direct‐current superconducting quantum interference device magnetometer with direct signal injection , 1995 .

[15]  Vinay Ambegaokar,et al.  VOLTAGE DUE TO THERMAL NOISE IN THE dc JOSEPHSON EFFECT. , 1969 .

[16]  Karl van Bibber,et al.  Microwave cavity searches for dark-matter axions , 2003 .

[17]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[18]  J. E. Zimmerman,et al.  Sensitivity Enhancement of Superconducting Quantum Interference Devices through the Use of Fractional‐Turn Loops , 1971 .

[19]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .

[20]  John Clarke,et al.  DC SQUIDs as radiofrequency amplifiers , 1985 .

[21]  John Clarke,et al.  Investigation and reduction of excess low‐frequency noise in rf superconducting quantum interference devices , 1994 .

[22]  Harold Weinstock,et al.  The New superconducting electronics , 1993 .

[23]  Risto J. Ilmoniemi,et al.  SQUID magnetometers for low-frequency applications , 1989 .

[24]  John Clarke,et al.  Flicker (1/f) noise in tunnel junction dc SQUIDS , 1983 .

[25]  Vittorio Pizzella,et al.  Neuromagnetism and Its Clinical Applications , 1996 .

[26]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[27]  D. Koelle,et al.  Practical DC SQUIDS: Configuration and Performance , 2005 .

[28]  S. N. Erné,et al.  Magnetocardiography, an introduction , 1996 .

[29]  M. D. Alper,et al.  Detection of bacteria in suspension by using a superconducting quantum interference device , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Boris Chesca,et al.  Transfer function and thermal noise of YBa2Cu3O7−δ direct current superconducting quantum interference devices operated under large thermal fluctuations , 1999 .

[31]  J. Hutchison,et al.  A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm , 1997 .

[32]  Tapani Ryhänen,et al.  Effect of parasitic capacitance and inductance on the dynamics and noise of dc superconducting quantum interference devices , 1992 .

[33]  G. Ehnholm,et al.  Theory of the signal transfer and noise properties of the rf SQUID , 1977 .

[34]  Dietmar Drung,et al.  THEORY FOR THE MULTILOOP DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE MAGNETOMETER AND EXPERIMENTAL VERIFICATION , 1995 .

[35]  Vittorio Foglietti,et al.  Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field , 1995 .

[36]  Dietmar Drung,et al.  Integrated high‐Tc multiloop magnetometer , 1995 .

[37]  Frank Ludwig,et al.  SQUID Fabrication Technology , 2005 .

[38]  J Stepisnik,et al.  NMR imaging in the earth's magnetic field , 1990, Magnetic resonance in medicine.

[39]  John Clarke,et al.  Radio-frequency amplifier with tenth-kelvin noise temperature based on a microstrip direct current superconducting quantum interference device , 1999 .

[40]  Robert A. Buhrman,et al.  Noise in the rf SQUID , 1975 .

[41]  Boris Chesca,et al.  Radio Frequency SQUIDs and their Applications , 2001 .

[42]  J. Hutchison,et al.  A tuned SQUID amplifier for MRI based on a DOIT flux locked loop , 1997, IEEE Transactions on Applied Superconductivity.

[43]  Harold Weinstock,et al.  SQUID sensors : fundamentals, fabrication, and applications , 1996 .

[44]  Willi Zander,et al.  Substrate resonator for HTS rf SQUID operation , 2002 .

[45]  Boris Chesca,et al.  Theory of RF SQUIDs Operating in the Presence of Large Thermal Fluctuations , 1998 .

[46]  John Clarke,et al.  High-Tc super conducting quantum interference devices with slots or holes: Low 1/f noise in ambient magnetic fields , 1997 .

[47]  David J. Lurie,et al.  DC SQUID-based NMR detection from room temperature samples , 1992 .

[48]  V. Belitsky,et al.  DC SQUID RF amplifiers , 1992, IEEE Transactions on Applied Superconductivity.

[49]  J. E. Zimmerman,et al.  QUANTUM STATES AND TRANSITIONS IN WEAKLY CONNECTED SUPERCONDUCTING RINGS. , 1967 .

[50]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[51]  John Lambe,et al.  QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING , 1964 .

[52]  Y. Greenberg,et al.  Application of superconducting quantum interference devices to nuclear magnetic resonance , 1998 .

[53]  Jörn Beyer,et al.  Low-noise YBa2Cu3O7−x single layer dc superconducting quantum interference device (SQUID) magnetometer based on bicrystal junctions with 30° misorientation angle , 1998 .

[54]  John Clarke,et al.  Multilayer magnetometers based on high-Tc SQUIDs , 1995 .

[55]  John Clarke,et al.  dc SQUID: Noise and optimization , 1977 .

[56]  Alex I. Braginski,et al.  Chapter 6 – Squid Magnetometers , 2000 .

[57]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[58]  Jochen Mannhart,et al.  Grain boundaries in high-Tc superconductors , 2002 .

[59]  Boris Chesca,et al.  Experimental study of amplitude–frequency characteristics of high-transition-temperature radio frequency superconducting quantum interference devices , 2000 .

[60]  John Clarke,et al.  dc SQUID magnetometers from single layers of YBa2Cu3O7-x , 1993 .

[61]  Robert McDermott,et al.  Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields , 2002, Science.

[62]  Frederick C. Wellstood,et al.  Thin‐film multilayer interconnect technology for YBa2Cu3O7−x , 1994 .

[63]  Mark B. Ketchen,et al.  Ultra‐low‐noise tunnel junction dc SQUID with a tightly coupled planar input coil , 1982 .

[64]  Claudia D. Tesche,et al.  dc SQUID: Current noise , 1979 .

[65]  John Clarke,et al.  The microstrip Superconducting QUantum Interference Device RF amplifier: Tuning and cascading , 1999 .

[66]  R. McDermott,et al.  Ultrasensitive magnetic biosensor for homogeneous immunoassay. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Gerhard Stroink,et al.  Magnetocardiographic and Electrocardiographic Mapping Studies , 1996 .

[68]  Jonas Zmuidzinas,et al.  Superconducting detectors and mixers for millimeter and submillimeter astrophysics , 2004, Proceedings of the IEEE.

[69]  John Clarke,et al.  Addendum: ‘‘Low noise YBa2Cu3O7−x‐SrTiO3‐YBa2Cu3O7−x multilayers for improved superconducting magnetometers’’ [Appl. Phys. Lett. 66, 373 (1995)] , 1995 .

[70]  John Clarke,et al.  RADIO-FREQUENCY AMPLIFIER BASED ON A NIOBIUM DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE WITH MICROSTRIP INPUT COUPLING , 1998 .

[71]  J. Clarke,et al.  dc SQUID as a tuned radiofrequency amplifier , 1985 .

[72]  Keiji Enpuku,et al.  Detection of Magnetic Nanoparticles with Superconducting Quantum Interference Device (SQUID) Magnetometer and Application to Immunoassays , 1999 .

[73]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[74]  J. Clarke,et al.  SQUID-Detected Magnetic Resonance Imaging in Microtesla Magnetic Fields , 2004 .

[75]  M. Muck,et al.  Sensitive RF-SQUIDs and magnetometers operating at 77 K , 1993, IEEE Transactions on Applied Superconductivity.

[76]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[77]  Paul K. Hansma,et al.  Superconducting single‐junction interferometers with small critical currents , 1973 .

[78]  Willi Zander,et al.  Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices , 2000 .

[79]  Dietmar Drung,et al.  Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning , 2001 .

[80]  John Clarke,et al.  Microstrip superconducting quantum interference device radio-frequency amplifier: Tuning and cascading , 1999 .

[81]  Harold Weinstock,et al.  Applications of superconductivity , 2000 .

[82]  D V Berkovyx Irreversible relaxation behaviour of a general class of magnetic systems , 1996 .