Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50'N

[1]  G. Rau,et al.  Carbon-13 Depletion in a Hydrothermal Vent Mussel: Suggestion of a Chemosynthetic Food Source , 1979, Science.

[2]  D. Karl,et al.  Deep-Sea Primary Production at the Galapagos Hydrothermal Vents , 1980, Science.

[3]  J. H. Martin,et al.  Bacterial chemolithotrophy in the ocean is associated with sinking particles , 1984, Nature.

[4]  R. Gagosian,et al.  Suspended particulate organic material from hydrothermal vent waters at 21° N , 1984, Nature.

[5]  M. Mottl,et al.  Geomicrobiology of Deep-Sea Hydrothermal Vents , 1985, Science.

[6]  S. Heaney,et al.  An automated method for the analysis of ‘particulate’ carbon and nitrogen in natural waters , 1986, Hydrobiologia.

[7]  G. Massoth,et al.  Microorganisms in deep-sea hydrothermal plumes , 1986, Nature.

[8]  E. Baker,et al.  Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume , 1986, Nature.

[9]  James W. Murray,et al.  The influence of the major ions of seawater on the adsorption of simple organic acids by goethite , 1987 .

[10]  N. Pace,et al.  A microbiological study of Guaymas Basin high temperature hydrothermal vents , 1988 .

[11]  J. Dymond,et al.  Transport and settling of organic material in a deep-sea hydrothermal plume: evidence from particle flux measurements , 1989 .

[12]  A. Mcintyre,et al.  Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer , 1990 .

[13]  R. Colwell,et al.  Particulate DNA in Smoker Fluids: Evidence for Existence of Microbial Populations in Hot Hydrothermal Systems , 1990, Applied and environmental microbiology.

[14]  R. Schwarzenbach,et al.  Physical chemistry of organic compounds in the marine environment , 1992 .

[15]  Lei Zhou,et al.  Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3 , 1993 .

[16]  Matthew C. Smith,et al.  Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991 , 1993 .

[17]  B. Burd,et al.  Hydrothermal venting at endeavour ridge: effect on zooplankton biomass throughout the water column , 1994 .

[18]  J. Sarrazin,et al.  Microbial‐mineral floc associated with nascent hydrothermal activity on CoAxial Segment, Juan de Fuca Ridge , 1995 .

[19]  H. Ducklow,et al.  Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations , 1995 .

[20]  R. Collier,et al.  Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment , 1995 .

[21]  H. Edmonds,et al.  Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption , 1995, Nature.

[22]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[23]  R. Feely,et al.  Hydrothermal scavenging on the Juan de Fuca Ridge: 23OThxs, 10Be, and REEs in ridge-flank sediments , 1997 .

[24]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[25]  E. Baker Patterns of event and chronic hydrothermal venting following a magmatic intrusion: new perspectives from the 1996 Gorda Ridge eruption , 1998 .

[26]  E. Baker,et al.  Bacterial and viral abundances in hydrothermal event plumes over northern Gorda Ridge , 1998 .

[27]  M. Lilley,et al.  Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50 N, East Pacific Rise) , 1998 .

[28]  E. H. Battley The development of direct and indirect methods for the study of the thermodynamics of microbial growth , 1998 .

[29]  R. Feely,et al.  The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater , 1998 .

[30]  E. Baker,et al.  Geomicrobial transformation of manganese in Gorda Ridge event plumes , 1998 .

[31]  P. Sarradin,et al.  Chemical environment of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields, Mid Atlantic Ridge , 1999 .

[32]  E. Baker,et al.  Microbial biomass in the hydrothermal plumes associated with the 1998 Axial Volcano Eruption , 1999 .

[33]  G. M. Vinogradov,et al.  Visual observations of the vertical distribution of plankton throughout the water column above Broken Spur vent field, Mid-Atlantic Ridge , 1999 .

[34]  K. V. Damm Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: “Time zero,” the immediate posteruptive period , 2000 .

[35]  T. McCollom Geochemical constraints on primary productivity in submarine hydrothermal vent plumes , 2000 .

[36]  D. Dixon Molecular and morphological identification of settlement‐stage vent mussel larvae, Bathymodiolus azoricus (Bivalvia: Mytilidae), preserved in situ at active vent fields on the Mid‐Atlantic Ridge , 2000 .

[37]  Timothy M. Shank,et al.  Chemical speciation drives hydrothermal vent ecology , 2001, Nature.

[38]  Richard A. Feely,et al.  Ascending and descending particle flux from hydrothermal plumes at Endeavour Segment, Juan de Fuca Ridge , 2001 .

[39]  C. W. Carlson Production and Removal Processes , 2002 .

[40]  C. German,et al.  Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise , 2002 .

[41]  J. Cowen,et al.  Methane in aging hydrothermal plumes , 2002 .

[42]  Dennis A. Hansell,et al.  Biogeochemistry of marine dissolved organic matter , 2002 .

[43]  J. Baross,et al.  Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. , 2003, FEMS microbiology ecology.

[44]  P. Sarradin,et al.  Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna , 2003 .

[45]  A. Maruyama,et al.  Two Bacteria Phylotypes Are Predominant in the Suiyo Seamount Hydrothermal Plume , 2004, Applied and Environmental Microbiology.

[46]  Ronald D. Jones,et al.  Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. , 2004, FEMS microbiology ecology.

[47]  P. Worsfold,et al.  Simultaneous Determination of Dissolved Organic Carbon and Total Dissolved Nitrogen on a Coupled High-Temperature Combustion Total Organic Carbon-Nitrogen Chemiluminescence Detection (HTC TOC-NCD) System , 2005, Journal of automated methods & management in chemistry.

[48]  C. Suttle,et al.  High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality , 2005 .

[49]  M. Lilley,et al.  Dissolved Organic Carbon in Ridge-Axis and Ridge-Flank Hydrothermal Systems , 2006 .

[50]  H. Elderfield The oceans and marine geochemistry , 2006 .

[51]  C. Fisher,et al.  Variability of physico-chemical conditions in 9°50′N EPR diffuse flow vent habitats , 2006 .

[52]  Kenneth H. Rubin,et al.  A Sea-Floor Spreading Event Captured by Seismometers , 2006, Science.

[53]  C. German,et al.  The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes , 2007 .

[54]  E. Baker,et al.  Volcanic Eruptions at East Pacific Rise Near 9°50'N , 2007 .

[55]  G. Luther,et al.  Chemistry of iron sulfides. , 2007, Chemical reviews.

[56]  E. Calvo,et al.  Elderfield, H. (ed.) The Oceans and Marine Geochemistry , 2007 .

[57]  M. Kerszberg,et al.  A modeling approach of the influence of local hydrodynamic conditions on larval dispersal at hydrothermal vents. , 2008, Journal of theoretical biology.

[58]  Ronald D. Jones,et al.  Microbial ammonia oxidation and enhanced nitrogen cycling in the Endeavour hydrothermal plume , 2008 .

[59]  B. Toner Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume , 2009 .

[60]  B. Tebo,et al.  Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume , 2009 .

[61]  D. Garbe‐Schönberg,et al.  Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge , 2009 .

[62]  O. Gros,et al.  Sunken wood habitat for thiotrophic symbiosis in mangrove swamps. , 2009, Marine environmental research.

[63]  C. R. German,et al.  Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise , 2010, Proceedings of the National Academy of Sciences.

[64]  B. Tebo,et al.  Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. , 2010, Environmental microbiology.

[65]  L. Mullineaux,et al.  Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption , 2010, Proceedings of the National Academy of Sciences.

[66]  M. Gehlen,et al.  Hydrothermal contribution to the oceanic dissolved iron inventory , 2010 .

[67]  M. Wells,et al.  Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron , 2011 .

[68]  C. German,et al.  Time‐series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations , 2012, Geobiology.

[69]  J. Lupton Hydrothermal Plumes: Near and Far Field , 2013 .

[70]  K. V. Damm Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids , 2013 .

[71]  Christopher R. German,et al.  Hydrothermal Plumes Over Spreading‐Center Axes: Global Distributions and Geological Inferences , 2013 .