A Brief Survey of Optical Wireless Communication

Optical wireless communication (OWC) technologies have been discussed and evaluated in a wide range of application scenarios, which is drawing increasing interest to keep pace with the growth in LED technologies. OWC has unique advantages to provide safe, secure, low-cost, and high-bandwidth communications. As a compensation for the existing radio frequency communications, OWC has huge potentials to be used for distributed applications from indoor to outdoor, from atmosphere to ground and underwater. In this paper, we conduct a brief survey of the most recent advances and research activities in OWC. We study the advantages and potential applications of OWC, and provide an overview of the techniques used to achieve OWC system.Some potential future research directions for OWC are also discussed.

[1]  M. Kavehrad,et al.  Indoor infrared wireless communications using spot diffusing and fly-eye receivers , 1993, Canadian Journal of Electrical and Computer Engineering.

[2]  Y. D. Gong,et al.  Study of optical wireless CDMA receivers , 2002, 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002..

[3]  Xun Li,et al.  A Low PAPR WLED Communication System Using SC-FDMA Techniques , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[4]  Joseph M. Kahn,et al.  Angle diversity for nondirected wireless infrared communication , 2000, IEEE Trans. Commun..

[5]  Yongjin Wang,et al.  Real-time Audio & Video Transmission System Based on Visible Light Communication , 2013 .

[6]  Harald Haas,et al.  A study of LED nonlinearity effects on optical wireless transmission using OFDM , 2009, 2009 IFIP International Conference on Wireless and Optical Communications Networks.

[7]  G. Cossu,et al.  1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation , 2012, IEEE Photonics Journal.

[8]  Ieee Xplore IEEE industry applications magazine , 1995 .

[9]  K. Langer,et al.  513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED , 2010, Journal of Lightwave Technology.

[10]  Edward H. Sargent,et al.  The role of optical CDMA in access networks , 2002 .

[11]  Masao Nakagawa,et al.  Indoor Visible Light Data Transmission System Utilizing White LED Lights , 2003 .

[12]  J. Armstrong,et al.  OFDM for Optical Communications , 2009, Journal of Lightwave Technology.

[13]  R. Perez-Jimenez,et al.  Low-Cost Diffuse Wireless Optical Communication System based on White LED , 2006, 2006 IEEE International Symposium on Consumer Electronics.

[14]  Xun Li,et al.  The WLED communication system using SC-FDM techniques for WLAN communications , 2010, IWCMC.

[15]  Masao Nakagawa,et al.  Fundamental analysis for visible-light communication system using LED lights , 2004, IEEE Transactions on Consumer Electronics.

[16]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communication , 1998, IEEE Trans. Commun..

[17]  A. Mirvakili,et al.  High efficiency LED driver design for concurrent data transmission and PWM dimming control for indoor visible light communication , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[18]  Harald Haas,et al.  Indoor MIMO Optical Wireless Communication Using Spatial Modulation , 2010, 2010 IEEE International Conference on Communications.

[19]  Brian M. Sadler,et al.  Ultraviolet Communications: Potential and State-Of-The-Art , 2008, IEEE Communications Magazine.

[20]  A. Nirmalathas,et al.  Impact of Crosstalk on Indoor WDM Optical Wireless Communication Systems , 2012, IEEE Photonics Journal.

[21]  Joachim Walewski,et al.  High-Speed Wireless Indoor Communication via Visible Light , 2007 .

[22]  Thomas D. C. Little,et al.  Network solutions for the LOS problem of new indoor free space optical system , 2010, 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010).

[23]  P. Daukantas Optical Wireless Communications: The New “Hot Spots”? , 2014 .

[24]  Timothy O'Farrell,et al.  Infrared wireless communications , 2000, 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525).

[25]  Masao Nakagawa,et al.  Bi-directional visible-light communication using corner cube modulator , 2003 .

[26]  S. Randel,et al.  Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes , 2008, 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing.

[27]  Peng Liu,et al.  New structure of using image sensor communication in smart house with smart grid , 2012, FGST.

[28]  Thomas D. C. Little,et al.  Using LED Lighting for Ubiquitous Indoor Wireless Networking , 2008, 2008 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications.

[29]  Ali Ghrayeb,et al.  Spatial modulation: optimal detection and performance analysis , 2008, IEEE Communications Letters.

[30]  Svilen Dimitrov,et al.  On the Clipping Noise in an ACO-OFDM Optical Wireless Communication System , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[31]  David J. Goodman,et al.  Peak-To-Average Power Ratio of Single Carrier FDMA Signals with Pulse Shaping , 2006, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.

[32]  Rafael Perez-Jimenez,et al.  OFDM over indoor wireless optical channel , 2005 .

[33]  Hoa Le Minh,et al.  80 Mbit/s Visible Light Communications using pre-equalized white LED , 2008, 2008 34th European Conference on Optical Communication.

[34]  D. O’brien,et al.  High-Speed Visible Light Communications Using Multiple-Resonant Equalization , 2008, IEEE Photonics Technology Letters.

[35]  Masao Nakagawa,et al.  Performance evaluation of visible-light wireless communication system using white LED lightings , 2004, Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No.04TH8769).

[36]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979, Proceedings of the IEEE.

[37]  Fuad E. Alsaadi,et al.  Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment , 2009, IEEE Journal on Selected Areas in Communications.

[38]  Harald Haas,et al.  Indoor optical wireless communication: potential and state-of-the-art , 2011, IEEE Communications Magazine.

[39]  Dominic C. O'Brien,et al.  High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting , 2009, IEEE Journal on Selected Areas in Communications.

[40]  D. O’brien,et al.  100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED , 2009, IEEE Photonics Technology Letters.

[41]  Jindong Hou,et al.  Polling scheme for indoor LOS optical wireless LAN , 2003 .

[42]  Hoa Le Minh,et al.  Equalisation for high-speed Visible Light Communications using white-LEDs , 2008, 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing.

[43]  J. Kahn,et al.  50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization , 1994, IEEE Photonics Technology Letters.

[44]  Muhammad Tahir,et al.  Visible light communication using wavelength division multiplexing for smart spaces , 2012, 2012 IEEE Consumer Communications and Networking Conference (CCNC).

[45]  Tomoaki Ohtsuki Multiple-subcarrier modulation in optical wireless communications , 2003, IEEE Commun. Mag..

[46]  Jean Armstrong,et al.  Power efficient optical OFDM , 2006 .

[47]  Harald Haas,et al.  Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs , 2009, Int. J. Ultra Wideband Commun. Syst..

[48]  Joseph M. Kahn,et al.  Performance evaluation of experimental 50-Mb/s diffuse infrared wireless link using on-off keying with decision-feedback equalization , 1996, IEEE Trans. Commun..

[49]  D.J. Goodman,et al.  Single carrier FDMA for uplink wireless transmission , 2006, IEEE Vehicular Technology Magazine.

[50]  Eisuke Hanada,et al.  Possible Electromagnetic Interference with Electronic Medical Equipment by Radio Waves Coming from Outside the Hospital , 2004, Journal of Medical Systems.

[51]  Dominic C. O'Brien,et al.  Vertical handover-decision-making algorithm using fuzzy logic for the integrated Radio-and-OW system , 2006, IEEE Transactions on Wireless Communications.

[52]  Joseph M. Kahn,et al.  Experimental characterization of non-directed indoor infrared channels , 1995, IEEE Trans. Commun..

[53]  D. O'Brien,et al.  A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications , 2013, IEEE Photonics Technology Letters.

[54]  G Cossu,et al.  3.4 Gbit/s visible optical wireless transmission based on RGB LED. , 2012, Optics express.

[55]  Harald Haas,et al.  Indoor broadcasting via white LEDs and OFDM , 2009, IEEE Transactions on Consumer Electronics.

[56]  Steve Hranilovic,et al.  Power reduction techniques for multiple-subcarrier modulated diffuse wireless optical channels , 2008, IEEE Transactions on Communications.

[57]  Jean Armstrong,et al.  Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN , 2008, IEEE Communications Letters.

[58]  Eisuke Hanada,et al.  The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital. , 2007, Annali dell'Istituto superiore di sanita.

[59]  Jinguo Quan,et al.  Performance of indoor optical femtocell by visible light communication , 2013 .

[60]  Xavier Fernando Performance of an infrared wireless CDMA system , 2003, SPIE Defense + Commercial Sensing.

[61]  R. Van der Togt,et al.  Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment. , 2008, JAMA.

[62]  Stefan Schmid,et al.  LED-to-LED visible light communication networks , 2013, MobiHoc '13.

[63]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[64]  Stefan Videv,et al.  Light fidelity (Li-Fi): towards all-optical networking , 2013, Photonics West - Optoelectronic Materials and Devices.

[65]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..