Determining the Number and Structure of Phylogenetic Invariants
暂无分享,去创建一个
[1] Jean-Pierre Serre. Géométrie algébrique et géométrie analytique , 1956 .
[2] J. Risler. Le théorème des zéros en géométries algébrique et analytique réelles , 1976 .
[3] I. Shafarevich. Basic algebraic geometry , 1974 .
[4] Mike A. Steel,et al. Classifying and Counting Linear Phylogenetic Invariants for the Jukes-Cantor Model , 1995, J. Comput. Biol..
[5] Local reality on algebraic varieties , 1974 .
[6] J. Felsenstein,et al. Counting phylogenetic invariants in some simple cases. , 1991, Journal of theoretical biology.
[7] László A. Székely,et al. A complete family of phylogenetic invariants for any number of taxa under Kimura's 3ST model , 1993 .
[8] J. Felsenstein,et al. Invariants of phylogenies in a simple case with discrete states , 1987 .
[9] D Sankoff,et al. A remarkable nonlinear invariant for evolution with heterogeneous rates. , 1996, Mathematical biosciences.
[10] H. Munro,et al. Mammalian protein metabolism , 1964 .
[11] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[12] J. A. Cavender,et al. Mechanized derivation of linear invariants. , 1989, Molecular biology and evolution.
[13] Steven N. Evans,et al. Constructing and Counting Phylogenetic Invariants , 1998, J. Comput. Biol..
[14] J A Lake,et al. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. , 1987, Molecular biology and evolution.
[15] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[16] H. Cartan,et al. Variétés analytiques réelles et variétés analytiques complexes , 1957 .
[17] T. Jukes. CHAPTER 24 – Evolution of Protein Molecules , 1969 .
[18] László A. Székely,et al. Reconstructing Trees When Sequence Sites Evolve at Variable Rates , 1994, J. Comput. Biol..
[19] D Sankoff,et al. Phylogenetic invariants for more general evolutionary models. , 1995, Journal of theoretical biology.
[20] Terence P. Speed,et al. Invariants of Some Probability Models Used in Phylogenetic Inference , 1993 .