Methods to extract interfacial free energies of flat and curved interfaces from computer simulations

When a computer simulation of a model system that can exist in two phases (e.g., vapor and liquid at the condensation transition, or solid and liquid at the melting transition) is constrained such that the order parameter distinguishing the two phases takes a value in the two-phase coexistence region, the thermodynamic potential of the system contains a contribution due to the interfaces. Studying the chemical potential excess relative to the coexistence curve as a function of the density, for a suitable range of linear dimensions of the simulation box, the interfacial contribution to the thermodynamic potential can be found via thermodynamic integration methods. While for “slab-like” two-phase configurations this method is well-known (and has been tested for various models by comparison with other methods, such as the analysis of the capillary wave induced broadening of interfacial profiles), for curved interfaces of droplets this technique is new. The question whether it can be used to estimate a Tolman length is considered, and an extension to discuss phase coexistence in systems confined by planar walls is given. Then line-tension corrections need to be considered both for slab-like two-phase geometries and for wall-attached (sphere-cap-shaped) droplets. The methods proposed in this paper yield input for the description of both homogeneous and heterogeneous nucleation and growth.

[1]  Capillary waves in a colloid-polymer interface. , 2004, The Journal of chemical physics.

[2]  László Gránásy,et al.  DIFFUSE INTERFACE THEORY FOR HOMOGENEOUS VAPOR CONDENSATION , 1996 .

[3]  D. J. Tildesley,et al.  The pressure tensor at the planar surface of a liquid , 1983 .

[4]  P. Gennes Wetting: statics and dynamics , 1985 .

[5]  V. Talanquer,et al.  Density Functional Analysis of Phenomenological Theories of Gas-Liquid Nucleation , 1995 .

[6]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[7]  W. Reinhardt,et al.  Finite‐size scaling behavior of the free energy barrier between coexisting phases: Determination of the critical temperature and interfacial tension of the Lennard‐Jones fluid , 1995 .

[8]  V. Talanquer,et al.  Density functional theory of nucleation: A semiempirical approach , 1995 .

[9]  S. Dietrich,et al.  Line tension between fluid phases and a substrate , 1998 .

[10]  L. Gránásy Semiempirical van der Waals/Cahn–Hilliard theory: Size dependence of the Tolman length , 1998 .

[11]  K. Binder,et al.  Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[13]  K. Binder,et al.  Computer Simulation of Profiles of Interfaces Between Coexisting Phases , 2000 .

[14]  R. Evans,et al.  Liquids at interfaces: what can a theorist contribute? , 1990 .

[15]  P. Tarazona,et al.  Line tension effects in heterogeneous nucleation theory , 1981 .

[16]  D Jasnow,et al.  Critical phenomena at interfaces , 1984 .

[17]  Wetting of curved surfaces , 1997, cond-mat/9711033.

[18]  R. Lipowsky,et al.  Stability of liquid channels or filaments in the presence of line tension , 2005 .

[19]  M. Fisher,et al.  Curvature corrections to the surface tension of fluid drops: Landau theory and a scaling hypothesis , 1984 .

[20]  David Turnbull,et al.  Kinetics of Heterogeneous Nucleation , 1950 .

[21]  A. F. Bakker,et al.  A molecular dynamics simulation of the Lennard‐Jones liquid–vapor interface , 1988 .

[22]  K. Binder,et al.  Monte Carlo Studies of Wetting, Interface Localization and Capillary Condensation , 2003 .

[23]  J. Weeks Structure and thermodynamics of the liquid–vapor interface , 1977 .

[24]  A. W. Neumann,et al.  Generalization of the classical theory of capillarity , 1977 .

[25]  Peter Virnau,et al.  Calculation of free energy through successive umbrella sampling. , 2004, The Journal of chemical physics.

[26]  Alain Karma,et al.  Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations , 2002 .

[27]  Alan M. Ferrenberg,et al.  Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study. , 1991, Physical review. B, Condensed matter.

[28]  Kurt Binder,et al.  Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models , 1982 .

[29]  K. Binder,et al.  Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide. , 2008, The Journal of chemical physics.

[30]  Gernot Kostorz,et al.  Phase Transformations in Materials , 2001 .

[31]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[32]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[33]  ``Intrinsic'' profiles and capillary waves at homopolymer interfaces: A Monte Carlo study , 1998, cond-mat/9809407.

[34]  A. C. Zettlemoyer,et al.  Homogeneous Nucleation Theory , 1974 .

[35]  J. Indekeu LINE TENSION AT WETTING , 1994 .

[36]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[37]  P. Blanckenhagen,et al.  Structure and dynamics of surfaces. I , 1986 .

[38]  J. Hoyt,et al.  Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Privman Finite-size properties of the angle-dependent surface tension of rough interfaces. , 1988, Physical review letters.

[40]  H. Beijeren,et al.  The Roughening Transition , 1987 .

[41]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[42]  M. Anisimov Divergence of Tolman's length for a droplet near the critical point. , 2007, Physical review letters.

[43]  László Gránásy,et al.  Diffuse interface theory of nucleation , 1993 .

[44]  E. M. Blokhuis,et al.  Thermodynamic expressions for the Tolman length. , 2006, The Journal of chemical physics.

[45]  D. Oxtoby,et al.  Nonclassical nucleation theory for the gas-liquid transition , 1988 .

[46]  F. Stillinger,et al.  Interfacial Density Profile for Fluids in the Critical Region , 1965 .

[47]  Kurt Binder,et al.  “Critical clusters” in a supersaturated vapor: Theory and Monte Carlo simulation , 1980 .

[48]  Akira Onuki,et al.  Phase Transition Dynamics , 2000 .

[49]  László Gránásy,et al.  Cahn–Hilliard theory with triple-parabolic free energy. I. Nucleation and growth of a stable crystalline phase , 2000 .

[50]  Wolfhard Janke,et al.  Monte Carlo study of the evaporation/condensation transition of Ising droplets , 2006 .

[51]  K. Binder,et al.  Computer simulation studies of finite-size broadening of solid–liquid interfaces: from hard spheres to nickel , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[53]  C. Rottman,et al.  Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions , 1984 .

[54]  Binder,et al.  Monte Carlo studies of anisotropic surface tension and interfacial roughening in the three-dimensional Ising model. , 1989, Physical review. B, Condensed matter.

[55]  Binder,et al.  Rough interfaces in a bcc-based binary alloy. , 1992, Physical review. B, Condensed matter.

[56]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[57]  K. Binder,et al.  Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. , 2008, The Journal of chemical physics.

[58]  V. I. Kalikmanov Semiphenomenological theory of the Tolman length , 1997 .

[59]  J. Horbach,et al.  Critical behaviour and interfacial fluctuations in a phase-separating model colloid–polymer mixture: grand canonical Monte Carlo simulations , 2004 .

[60]  M. Schick,et al.  Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer–copolymer mixture: A Monte Carlo study , 1996 .

[61]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Frontmatter , 2009 .

[62]  A. Onuki Phase Transition Dynamics: Statics , 2002 .

[63]  Dietrich Stauffer,et al.  Anual Reviews of Computational Physics VII , 1994 .

[64]  K. Binder,et al.  Phase behavior of n-alkanes in supercritical solution: a Monte Carlo study. , 2004, The Journal of chemical physics.

[65]  D. Bedeaux,et al.  Pressure tensor of a spherical interface , 1992 .

[66]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[67]  Surface tension, surface stiffness, and surface width of the 3-dimensional Ising model on a cubic lattice , 1992, hep-lat/9209013.

[68]  E. M. Blokhuis,et al.  Mean field curvature corrections to the surface tension , 1998 .

[69]  K. Binder,et al.  Static and dynamic critical behavior of a symmetrical binary fluid: a computer simulation. , 2006, The Journal of chemical physics.

[70]  C. Bruin,et al.  Molecular dynamics study of the curvature correction to the surface tension , 1994 .

[71]  Dongqing Li,et al.  Positive line tension as a requirement of stable equilibrium , 1996 .

[72]  H. Müller-Krumbhaar,et al.  The droplet model in three dimensions: Monte Carlo calculation results , 1974 .

[73]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[74]  B. Widom LINE TENSION AND THE SHAPE OF A SESSILE DROP , 1995 .

[75]  Kurt Binder,et al.  Two-phase equilibria and nucleation barriers near a critical point , 1982 .

[76]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[77]  Conceptual aspects of line tensions. , 2007, The Journal of chemical physics.

[78]  Frank H. Stillinger,et al.  Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .

[79]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[80]  D. Frenkel,et al.  From Algorithms to Applications , 2007 .

[81]  K. Binder Nucleation barriers, spinodals, and the Ginzburg criterion , 1984 .

[82]  Landau,et al.  Interface roughening in the three-dimensional Ising model. , 1990, Physical review. B, Condensed matter.

[83]  Histogram analysis as a method for determining the line tension of a three-phase contact region by Monte Carlo simulations. , 2004, The Journal of chemical physics.

[84]  R. Gretz Line‐Tension Effect in a Surface Energy Model of a Cap‐Shaped Condensed Phase , 1966 .

[85]  C. Croxton Fluid interfacial phenomena , 1986 .

[86]  J. Lebowitz,et al.  Phase transitions in equilibrium systems: microscopic models and mesoscopic free energies , 2005 .

[87]  Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin-film geometry: A Monte Carlo simulation , 1997, cond-mat/9708153.

[88]  Ulrich H. E. Hansmann,et al.  Properties of interfaces in the two and three dimensional Ising model , 1992 .

[89]  L. Gránásy Fundamentals of the Diffuse Interface Theory of Nucleation , 1996 .

[90]  J. Rowlinson A drop of liquid , 1994 .

[91]  D. Bedeaux,et al.  Correlation functions in the capillary wave model of the liquid–vapor interface , 1985 .

[92]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[93]  Kurt Binder,et al.  Theory of the evaporation/condensation transition of equilibrium droplets in finite volumes , 2003 .

[94]  Wilfried Oed,et al.  Structural and thermodynamic properties of interfaces between coexisting phases in polymer blends: a Monte Carlo simulation , 1995 .

[95]  Marek Biskup,et al.  On the formation/dissolution of equilibrium droplets , 2002 .

[96]  Marcus Müller,et al.  Order-parameter-based Monte Carlo simulation of crystallization. , 2006, The Journal of chemical physics.

[97]  V. K. Shen,et al.  Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems. , 2006, The Journal of chemical physics.

[98]  Sanjay Puri,et al.  Kinetics of Phase Transitions , 2004 .

[99]  Melanie J. I. Müller,et al.  Profile and Width of Rough Interfaces , 2005 .

[100]  D. Oxtoby,et al.  Gas–liquid nucleation in Lennard‐Jones fluids , 1991 .

[101]  Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility, and coexistence diameter. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  K. Binder,et al.  On the ground state structure of monolayers on the (100) face of fcc crystals , 2001 .

[103]  L. G. Macdowell,et al.  Interface and Surface Properties of Short Polymers in Solution: Monte Carlo Simulations and Self-Consistent Field Theory , 2000 .