Terahertz Detection with Perfectly-Absorbing Photoconductive Metasurface.

Terahertz (THz) photoconductive devices are used for generation, detection, and modulation of THz waves, and they rely on the ability to switch electrical conductivity on a subpicosecond time scale using optical pulses. However, fast and efficient conductivity switching with high contrast has been a challenge, because the majority of photoexcited charge carriers in the switch do not contribute to the photocurrent due to fast recombination. Here, we improve efficiency of electrical conductivity switching using a network of electrically connected nanoscale GaAs resonators, which form a perfectly absorbing photoconductive metasurface. We achieve perfect absorption without incorporating metallic elements, by breaking the symmetry of cubic Mie resonators. As a result, the metasurface can be switched between conductive and resistive states with extremely high contrast using an unprecedentedly low level of optical excitation. We integrate this metasurface with a THz antenna to produce an efficient photoconductive THz detector. The perfectly absorbing photoconductive metasurface opens paths for developing a wide range of efficient optoelectronic devices, where required optical and electronic properties are achieved through nanostructuring the resonator network.

[1]  M Unlu,et al.  Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. , 2013, Nature communications.

[2]  Steven G. Johnson,et al.  Perfect single-sided radiation and absorption without mirrors , 2016, 1607.04774.

[3]  F. Pavanello,et al.  Resonant cavities for efficient LT-GaAs photoconductors operating at λ = 1550 nm , 2016 .

[4]  Denis D. Arslanov,et al.  An ultrawide-bandwidth single-sideband modulator for terahertz frequencies , 2016, Nature Photonics.

[5]  M. Sinclair,et al.  Enhanced Second-Harmonic Generation Using Broken Symmetry III-V Semiconductor Fano Metasurfaces , 2018 .

[6]  Nezih Tolga Yardimci,et al.  Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection. , 2018, Small.

[7]  A. Davies,et al.  Terahertz generation mechanism in nano-grating electrode photomixers on Fe-doped InGaAsP. , 2017, Optics express.

[8]  Hui Cao,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[9]  Michael A. Cole,et al.  Strong terahertz absorption in all-dielectric Huygens’ metasurfaces , 2016, Nanotechnology.

[10]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[11]  John L. Reno,et al.  Efficient photoconductive terahertz detector with all-dielectric optical metasurface , 2018 .

[12]  Andrea Alu,et al.  Coherent perfect absorbers: linear control of light with light , 2017, 1706.03694.

[13]  Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces , 2016, 1607.06469.

[14]  John L. Reno,et al.  Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity , 2015 .

[15]  Thomas E Darcie,et al.  Nanoplasmonics enhanced terahertz sources. , 2014, Optics express.

[16]  M. Kats,et al.  Optical absorbers based on strong interference in ultra‐thin films , 2016, 1606.05707.

[17]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[18]  Alexander Krasnok,et al.  Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures , 2017, Scientific Reports.

[19]  Thomas E Darcie,et al.  Plasmon-Enhanced below Bandgap Photoconductive Terahertz Generation and Detection. , 2015, Nano letters.

[20]  Nezih Tolga Yardimci,et al.  High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays , 2016, Scientific Reports.

[21]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[22]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, Nature Communications.

[23]  Xianshun Ming,et al.  Degenerate critical coupling in all-dielectric metasurface absorbers. , 2017, Optics express.

[24]  R. Morandotti,et al.  Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation , 2010, Nanotechnology.

[25]  Carsten Rockstuhl,et al.  Theory of metasurface based perfect absorbers , 2017, 1711.08203.

[26]  A. Räisänen,et al.  Semiconductor TeraHertz Technology: Devices and Systems at Room Temperature Operation , 2015 .

[27]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[28]  S. V. Sreenivasan,et al.  Enhanced Photoresponse in Metasurface-Integrated Organic Photodetectors. , 2018, Nano letters.

[29]  George T. Wang,et al.  Light-Emitting Metasurfaces: Simultaneous Control of Spontaneous Emission and Far-Field Radiation. , 2018, Nano letters.

[30]  Oleg Mitrofanov,et al.  Near-field microscope probe for far infrared time domain measurements , 2000 .

[31]  Shanhui Fan,et al.  Total absorption by degenerate critical coupling , 2014 .

[32]  M. Jarrahi,et al.  A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity , 2017, Scientific Reports.

[33]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[34]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[35]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[36]  Igal Brener,et al.  Collection-mode near-field imaging with 0.5-THz pulses , 2001 .

[37]  Reuven Gordon,et al.  Nanoplasmonic terahertz photoconductive switch on GaAs. , 2012, Nano letters.

[38]  Daniel M. Mittleman,et al.  Frequency-division multiplexing in the terahertz range using a leaky-wave antenna , 2015, Nature Photonics.

[39]  Safieddin Safavi-Naeini,et al.  A hybrid analysis method for plasmonic enhanced terahertz photomixer sources. , 2013, Optics express.

[40]  Y. Kivshar,et al.  Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. , 2018, Physical review letters.

[41]  John L. Reno,et al.  Optically thin hybrid cavity for terahertz photo-conductive detectors , 2017 .

[42]  Yuri S. Kivshar,et al.  Fano resonances in photonics , 2017, Nature Photonics.

[43]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[44]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[45]  Enrique Castro-Camus,et al.  Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited] , 2016 .