Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy

[1]  F. Xiao,et al.  Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle , 2021, Nature Catalysis.

[2]  J. R. Rygg,et al.  Implications of the iron oxide phase transition on the interiors of rocky exoplanets , 2021, Nature Geoscience.

[3]  P. Renforth,et al.  Ambient weathering of magnesium oxide for CO2 removal from air , 2020, Nature Communications.

[4]  C. Yavuz,et al.  Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO , 2020, Science.

[5]  Binghai Yan,et al.  Attosecond spectral singularities in solid-state high-harmonic generation , 2020, Nature Photonics.

[6]  C. Grey,et al.  Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy , 2019, Nature Communications.

[7]  R. Schlögl,et al.  Ni Single Atom Catalysts for CO2 Activation , 2019, Journal of the American Chemical Society.

[8]  B. Yue,et al.  Simultaneous Characterization of Solid Acidity and Basicity of Metal Oxide Catalysts via the Solid-State NMR Technique , 2018, The Journal of Physical Chemistry C.

[9]  Luming Peng,et al.  Recent progress in investigations of surface structure and properties of solid oxide materials with nuclear magnetic resonance spectroscopy , 2018, Chinese Chemical Letters.

[10]  C. Ciobanu,et al.  Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. , 2018, Journal of the American Chemical Society.

[11]  Guozhao Ji,et al.  Mesoporous MgO promoted with NaNO3/NaNO2 for rapid and high-capacity CO2 capture at moderate temperatures , 2018 .

[12]  Heyong He,et al.  Mapping surface-modified titania nanoparticles with implications for activity and facet control , 2017, Nature Communications.

[13]  C. Grey,et al.  Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy , 2017, Nature Communications.

[14]  M. Pruski,et al.  Natural Abundance 17 O DNP NMR Provides Precise O-H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts. , 2017, Angewandte Chemie.

[15]  C. Wöll,et al.  IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. , 2017, Chemical Society reviews.

[16]  David A. Reis,et al.  Anisotropic high-harmonic generation in bulk crystals , 2016, Nature Physics.

[17]  Ying Jiang,et al.  Perspective: Structure and dynamics of water at surfaces probed by scanning tunneling microscopy and spectroscopy. , 2016, The Journal of chemical physics.

[18]  Jong-Ryul Jeong,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[19]  Heyong He,et al.  Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study. , 2016, Journal of the American Chemical Society.

[20]  B. Yue,et al.  Facet-dependent acidic and catalytic properties of sulfated titania solid superacids. , 2015, Chemical communications.

[21]  Luming Peng,et al.  17O solid-state NMR studies of oxygen-containing catalysts , 2015 .

[22]  C. Grey,et al.  Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy , 2015, Science Advances.

[23]  G. Jeschke,et al.  Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. , 2013, Journal of the American Chemical Society.

[24]  S. Joo,et al.  Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[25]  C. Grey,et al.  Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy. , 2013, Journal of the American Chemical Society.

[26]  Gilbert W. Collins,et al.  Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature , 2012, Science.

[27]  Les Allen,et al.  Modeling Nanoscale Imaging in Electron Microscopy , 2012 .

[28]  C. Copéret,et al.  A slowly relaxing rigid biradical for efficient dynamic nuclear polarization surface-enhanced NMR spectroscopy: expeditious characterization of functional group manipulation in hybrid materials. , 2012, Journal of the American Chemical Society.

[29]  P. Carrez,et al.  Modelling the rheology of MgO under Earth’s mantle pressure, temperature and strain rates , 2012, Nature.

[30]  V. Grassian,et al.  The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. , 2011, Journal of environmental monitoring : JEM.

[31]  Adriano Zecchina,et al.  Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. , 2010, Chemical Society reviews.

[32]  Ji Yun Lee,et al.  Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption , 2010 .

[33]  S. Wimperis,et al.  Solid-state NMR spectroscopy. , 2009, Physical chemistry chemical physics : PCCP.

[34]  J. Hrbek,et al.  Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction , 2007, Science.

[35]  Céline Chizallet,et al.  Study of the Structure of OH Groups on MgO by 1D and 2D 1H MAS NMR Combined with DFT Cluster Calculations , 2007 .

[36]  C. Kübel,et al.  Efficient preparation and catalytic activity of MgO(111) nanosheets. , 2006, Angewandte Chemie.

[37]  C. Chizallet,et al.  1H MAS NMR study of the coordination of hydroxyl groups generated upon adsorption of H2O and CD3OH on clean MgO surfaces , 2006 .

[38]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[39]  Chong Kul Ryu,et al.  CO2 absorption and regeneration of alkali metal-based solid sorbents , 2006 .

[40]  C. Noguera Physics and Chemistry at Oxide Surfaces , 2005 .

[41]  S. Stankic,et al.  Size-dependent optical properties of MgO nanocubes. , 2005, Angewandte Chemie.

[42]  C. Grey,et al.  Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques , 2005, Nature materials.

[43]  A. Shluger,et al.  Spectroscopy of low-coordinated surface sites: Theoretical study of MgO , 1999 .

[44]  T. Gullion Introduction to rotational-echo, double-resonance NMR , 1998 .

[45]  Mark E. Smith,et al.  Orientation of the quadrupole and dipole tensors of hydroxyl groups by 17O quadrupole separated local field NMR , 1998 .

[46]  A. Chadwick,et al.  Oxygen Speciation in Nanophase MgO from Solid-State 17O NMR , 1998 .

[47]  T. Tashiro,et al.  Boles of low-coordinated surface ions in adsorption of gases on MgO , 1997 .

[48]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[49]  M. E. Smith,et al.  17O magic-angle spinning nuclear magnetic resonance of CaCO3. , 1995, Solid state nuclear magnetic resonance.

[50]  V. M. Mastikhin Characterization of Surface Active Sites of Catalysts with High‐ Resolution Solid‐State NMR , 1994 .

[51]  S. N. Stuart,et al.  17O NMR in simple oxides , 1990 .

[52]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[53]  E. Oldfield,et al.  Solid-state oxygen-17 nuclear magnetic resonance spectroscopic study of the group 11 oxides , 1985 .

[54]  F. Freund,et al.  Surface charges and subsurface space-charge distribution in magnesium oxides containing dissolved traces of water , 1984 .

[55]  E. Oldfield,et al.  High-resolution oxygen-17 NMR of solids , 1984 .

[56]  R. L. Gealer,et al.  Carbon dioxide sorption studies on magnesium oxide , 1983 .

[57]  S. Coluccia,et al.  Photoluminescent spectra of surface states in alkaline earth oxides , 1979 .

[58]  S. J. Gregg,et al.  Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements , 1970 .

[59]  E. G. COX,et al.  Structural Inorganic Chemistry , 1946, Nature.