Analysis of Kelly-optimal portfolios

We investigate the use of Kelly's strategy in the construction of an optimal portfolio of assets. For lognormally distributed asset returns, we derive approximate analytical results for the optimal investment fractions in various settings. We show that when mean returns and volatilities of the assets are small and there is no risk-free asset, the Kelly-optimal portfolio lies on Markowitz Efficient Frontier. Since in the investigated case the Kelly approach forbids short positions and borrowing, often only a small fraction of the available assets is included in the Kelly-optimal portfolio. This phenomenon, that we call condensation, is studied analytically in various model scenarios.

[1]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[2]  W. Ziemba,et al.  Growth versus security in dynamic investment analysis , 1992 .

[3]  Jstor,et al.  Invention in the Industrial Research Laboratory , 1963, Journal of Political Economy.

[4]  M. Finkelstein,et al.  Optimal strategies for repeated games , 1981, Advances in Applied Probability.

[5]  CAN YOU DO BETTER THAN KELLY IN THE SHORT RUN ? , .

[6]  André F. Perold,et al.  Large-Scale Portfolio Optimization , 1984 .

[7]  W. Whitt,et al.  Portfolio choice and the Bayesian Kelly criterion , 1996, Advances in Applied Probability.

[8]  D. F. Ahelegbey,et al.  Network based evidence of the financial impact of Covid-19 pandemic , 2021, International Review of Financial Analysis.

[9]  P. Samuelson The "fallacy" of maximizing the geometric mean in long sequences of investing or gambling. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Sergei Maslov,et al.  Optimal Investment Strategy for Risky Assets , 1998 .

[11]  H. Latané Criteria for Choice Among Risky Ventures , 1959, Journal of Political Economy.

[12]  Robert A. Rogowsky,et al.  Offprint Order Form for International Economics Review Number of Pages Charge per 50 Copies*** Charge per 100 Copies International Economic Review Ier Lawrence Klein Lecture: the Case against Intellectual Monopoly * , 2004 .

[13]  Richard K. Crump,et al.  Nonparametric Tests for Treatment Effect Heterogeneity , 2006, The Review of Economics and Statistics.

[14]  Yi-Cheng Zhang,et al.  Diversification and limited information in the Kelly game , 2008, 0803.1364.

[15]  V. Jansen,et al.  Evolution and population dynamics in stochastic environments , 1996, Researches on Population Ecology.

[16]  C. Yeung,et al.  How to quantify the influence of correlations on investment diversification , 2008, 0805.3397.

[17]  Euclid,et al.  Advances in Applied Probability , 1981, Journal of Applied Probability.

[18]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[19]  W. Ziemba,et al.  Capital growth: Theory and practice , 2008 .

[20]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[21]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[22]  Sanford J. Grossman,et al.  OPTIMAL INVESTMENT STRATEGIES FOR CONTROLLING DRAWDOWNS , 1993 .

[23]  H. G. Andrewartha,et al.  Population Ecology , 2020, Nature.

[24]  Sergei Maslov,et al.  Dynamical optimization theory of a diversified portfolio , 1998 .

[25]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[26]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[27]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[28]  Carl T. Bergstrom,et al.  Shannon information and biological fitness , 2004, Information Theory Workshop.

[29]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[30]  William R. Eadington,et al.  Finding the edge : mathematical analysis of casino games , 2000 .

[31]  W. Ziemba,et al.  Capital growth with security , 2004 .

[32]  H. Markowitz Investment for the Long Run: New Evidence for an Old Rule , 1976 .

[33]  E. Thorp The Kelly Criterion in Blackjack Sports Betting, and the Stock Market , 2008 .

[34]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[35]  Haim Levy,et al.  Stochastic Dominance among Log-Normal Prospects , 1973 .

[36]  H. N. Nagaraja,et al.  Order Statistics, Third Edition , 2005, Wiley Series in Probability and Statistics.

[37]  Pierre-Louis Lions,et al.  On mathematical finance , 2000 .

[38]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[39]  L. Breiman Optimal Gambling Systems for Favorable Games , 1962 .