A novel approach for fuel cell parameter estimation using simple Genetic Algorithm

Abstract A new problem formulation for effective identification of fuel cell parameters is proposed. The proposed formulation is solved by applying Genetic Algorithm optimization technique. The algorithm steps are coded in MATLAB and the objective function is solved for PEM fuel cell. In order to estimate the performance of the proposed formulation; extensive simulations are performed with both the proposed and conventional objective functions and the results obtained are compared. Further, a comprehensive evaluation based on objective function value, convergence speed and absolute voltage error value is also made to prove the superiority of the proposed formulation over the conventional curve fitting approach.

[1]  Stefan Preitl,et al.  Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity , 2013, Inf. Sci..

[2]  Ning Wang,et al.  A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model , 2012 .

[3]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[4]  M.G. Simoes,et al.  Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells , 2005, IEEE Transactions on Energy Conversion.

[5]  Norman Munroe,et al.  A two-phase model of an intermediate temperature PEM fuel cell , 2007 .

[6]  Gexiang Zhang,et al.  Parameter fitting of PEMFC models based on adaptive differential evolution , 2014 .

[7]  Edwin Lughofer,et al.  Hybridization of multi-objective evolutionary algorithms and artificial neural networks for optimizing the performance of electrical drives , 2013, Eng. Appl. Artif. Intell..

[8]  Alireza Rezazadeh,et al.  Artificial immune system-based parameter extraction of proton exchange membrane fuel cell , 2011 .

[9]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[10]  Qi Li,et al.  Seeker optimization algorithm for global optimization: A case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) , 2011 .

[11]  Ning Wang,et al.  An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells , 2013 .

[12]  Kyung-Suk Yun,et al.  Corrosion behaviour of Zr1−xTixV0.6Ni1.2M0.2 (M=Ni, Cr, Mn) AB2-type metal hydride alloys in alkaline solution , 1998 .

[13]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[14]  Onur BOYABATLI,et al.  Parameter Selection in Genetic Algorithms , 2004 .

[15]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[18]  N. Rajasekar,et al.  Critical Evaluation of Genetic Algorithm Based Fuel Cell Parameter Extraction , 2015 .

[19]  Amaël Caillard,et al.  Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation , 2007 .

[20]  Meiying Ye,et al.  Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization , 2009 .

[21]  Alexandra M.F.R. Pinto,et al.  A comparative study of approaches to direct methanol fuel cells modelling , 2007 .

[22]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[23]  Alireza Rezazadeh,et al.  A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell , 2011 .

[24]  K. Sundareswaran,et al.  Voltage harmonic elimination in PWM A.C. chopper using genetic algorithm , 2004 .

[25]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[26]  Ning Wang,et al.  Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell , 2013 .

[27]  Marcus Randall,et al.  Solution approaches for the capacitated single allocation hub location problem using ant colony optimisation , 2008, Comput. Optim. Appl..

[28]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[29]  Vicky Rouss,et al.  Multi-input and multi-output neural model of the mechanical nonlinear behaviour of a PEM fuel cell system , 2008 .

[30]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[31]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[32]  Ning Wang,et al.  Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells , 2014 .

[33]  Leandro dos Santos Coelho,et al.  A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model , 2014 .

[34]  Alireza Askarzadeh,et al.  Parameter estimation of fuel cell polarization curve using BMO algorithm , 2013 .

[35]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .