Exact structures and degeneration of Hall algebras

We study degenerations of the Hall algebras of exact categories induced by degree functions on the set of isomorphism classes of indecomposable objects. We prove that each such degeneration of the Hall algebra $\mathcal{H}(\mathcal{E})$ of an exact category $\mathcal{E}$ is the Hall algebra of a smaller exact structure $\mathcal{E}' < \mathcal{E}$ on the same additive category $\mathcal{A}.$ When $\mathcal{E}$ is admissible in the sense of Enomoto, for any $\mathcal{E}' < \mathcal{E}$ satisfying suitable finiteness conditions, we prove that $\mathcal{H}(\mathcal{E}')$ is a degeneration of $\mathcal{H}(\mathcal{E})$ of this kind. In the additively finite case, all such degree functions form a simplicial cone whose face lattice reflects properties of the lattice of exact structures. For the categories of representations of Dynkin quivers, we recover degenerations of the negative part of the corresponding quantum group, as well as the associated polyhedral structure studied by Fourier, Reineke and the first author. Along the way, we give minor improvements to certain results of Enomoto and Brustle-Langford-Hassoun-Roy concerning the classification of exact structures on an additive category. We prove that for each idempotent complete additive category $\mathcal{A}$, there exists an abelian category whose lattice of Serre subcategories is isomorphic to the lattice of exact structures on $\mathcal{A}$. We show that every Krull-Schmidt category admits a unique maximal admissible exact structure and that the lattice of smaller exact structures of an admissible exact structure is Boolean.

[1]  Sven-Ake Wegner,et al.  Maximal exact structures on additive categories , 2011, 1406.7192.

[2]  A. Berenstein,et al.  Primitively generated Hall algebras , 2012, 1209.2770.

[3]  H. Enomoto Classifications of exact structures and Cohen–Macaulay-finite algebras , 2017, Advances in Mathematics.

[4]  Yann Palu,et al.  Extriangulated categories, Hovey twin cotorsion pairs and model structures , 2019 .

[5]  Evgeny Feigin,et al.  PBW filtration and bases for irreducible modules in type An , 2010, 1002.0674.

[6]  Yann Palu,et al.  External triangulation of the homotopy category of exact quasi-category , 2020, 2004.02479.

[7]  S. Crivei When stable short exact sequences define an exact structure on any additive category , 2012, 1209.3423.

[8]  B. Toën Derived Hall algebras , 2005 .

[9]  O. Schiffmann KAC POLYNOMIALS AND LIE ALGEBRAS ASSOCIATED TO QUIVERS AND CURVES , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[10]  Olivier Shiffmann LECTURES ON HALL ALGEBRAS , 2008 .

[11]  T. Brustle,et al.  Reduction of exact structures , 2018, 1809.01282.

[12]  Tudor Pǎdurariu HALL ALGEBRAS , 2017 .

[13]  Bin Zhu,et al.  Grothendieck groups in extriangulated categories , 2021 .

[14]  O. Schiffmann,et al.  The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials , 2008, Compositio Mathematica.

[15]  H. Enomoto Relations for Grothendieck groups and representation-finiteness , 2018, Journal of Algebra.

[16]  Crystal Bases,et al.  LECTURES ON CANONICAL AND CRYSTAL BASES OF HALL ALGEBRAS , 2009 .

[17]  Ø. Solberg,et al.  Relative homology and representation theory 1 , 1993 .

[18]  W. Rump On the maximal exact structure of an additive category , 2011 .

[19]  Yasuaki Ogawa Auslander's defects over extriangulated categories: An application for the general heart construction , 2021, Journal of the Mathematical Society of Japan.

[20]  Linear degenerations of flag varieties: partial flags, defining equations, and group actions , 2020 .

[21]  P. Gabriel,et al.  Representations of Finite-Dimensional Algebras , 1992 .

[22]  Peter Samuelson,et al.  THE HOMFLYPT SKEIN ALGEBRA OF THE TORUS AND THE ELLIPTIC HALL ALGEBRA , 2014, 1410.0859.

[23]  T. Bridgeland Hall algebras and Donaldson-Thomas invariants , 2018, Algebraic Geometry: Salt Lake City 2015.

[24]  Grothendieck groups in extriangualted categories , 2019 .

[25]  X. Fang,et al.  DEGREE CONES AND MONOMIAL BASES OF LIE ALGEBRAS AND QUANTUM GROUPS , 2016, Glasgow Mathematical Journal.

[26]  H. Krause,et al.  Length Categories of Infinite Height , 2016, 1702.05415.

[27]  Jean-Pierre Schneiders Quasi-Abelian categories and sheaves , 1999 .

[28]  J. Xiao,et al.  Remarks on Hall algebras of triangulated categories , 2012, 1208.2312.

[29]  F. Haiden Legendrian skein algebras and Hall algebras , 2019, Mathematische Annalen.

[30]  Quivers , 2021, A Gentle Introduction to Homological Mirror Symmetry.

[31]  J. A. López-Ramos,et al.  Relative Homological Algebra , 2000 .

[32]  S. Crivei Maximal exact structures on additive categories revisited , 2011, 1106.1606.

[33]  Ø. Solberg Going relative with Maurice—a survey , 2018 .

[34]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[35]  George Lusztig,et al.  Introduction to Quantum Groups , 1993 .

[36]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[37]  X. Fang,et al.  Weighted PBW degenerations and tropical flag varieties , 2017, Communications in Contemporary Mathematics.

[38]  Yann Palu,et al.  Auslander–Reiten theory in extriangulated categories , 2018, Transactions of the American Mathematical Society, Series B.

[39]  T. Bridgeland Scattering diagrams, Hall algebras and stability conditions , 2016, Algebraic Geometry.

[40]  J. Green Hall algebras, hereditary algebras and quantum groups , 1995 .

[41]  Apostolos Beligiannis Relative Homological Algebra and Purity in Triangulated Categories , 2000 .

[42]  Olivier Schiffmann,et al.  LECTURES ON HALL ALGEBRAS , 2006, math/0611617.

[43]  B. Keller Chain complexes and stable categories , 1990 .

[44]  Ghislain Fourier,et al.  PBW-type filtration on quantum groups of type $A_n$ , 2015, 1503.05428.

[45]  M. Reineke,et al.  Linear degenerations of flag varieties , 2016, Mathematische Zeitschrift.

[46]  Maurice Auslander,et al.  Representation Theory of Artin Algebras II , 1974 .

[47]  I. Reiten,et al.  Representation theory of artin algebras iii almost split sequences , 1975 .

[48]  M. C. R. Butler,et al.  Classes of extensions and resolutions , 1961, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  T. Bridgeland Quantum groups via Hall algebras of complexes , 2011, 1111.0745.

[50]  Eisenstein series and quantum affine algebras , 1996, alg-geom/9604018.

[51]  Claus Michael Ringel,et al.  Hall algebras and quantum groups , 1990 .

[52]  P. Dräxler,et al.  Exact categories and vector space categories , 1999 .

[53]  W. Rump Stable short exact sequences and the maximal exact structure of an additive category , 2015 .

[54]  Jiangsheng Hu,et al.  Proper classes and Gorensteinness in extriangulated categories , 2019, Journal of Algebra.

[55]  Eugene Gorsky,et al.  Refined knot invariants and Hilbert schemes , 2013, 1304.3328.

[56]  M. Auslander Relations for Grothendieck groups of Artin algebras , 1984 .

[57]  E. Feigin,et al.  Quiver Grassmannians and degenerate flag varieties , 2011, 1106.2399.

[58]  G. Lusztig Quivers, perverse sheaves, and quantized enveloping algebras , 1991 .

[59]  M. C. R. Butler Grothendieck groups and almost split sequences , 1981 .

[60]  E. D. J. Avigad,et al.  Sur quelques points d'algebre homologique , 2009 .

[61]  E. Marcos,et al.  The grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras , 2000 .

[62]  W. Geigle Grothendieck Groups and Exact Sequences for Hereditary Artin Algebras , 1985 .

[63]  Hall algebras associated to triangulated categories , 2006, math/0608144.

[64]  O. Schiffmann Lectures on canonical and crystal bases of Hall algebras , 2009, 0910.4460.

[65]  M. Kapranov,et al.  Higher Segal Spaces , 2012, Lecture Notes in Mathematics.

[66]  Theo Buehler,et al.  Exact Categories , 2008, 0811.1480.

[67]  A. B. Buan Closed Subbifunctors of the Extension Functor , 2001 .

[68]  H. Prüfer Theorie der Abelschen Gruppen , 1924 .

[69]  David A. Buchsbaumi A NOTE ON HOMOLOGY IN CATEGORIES , 1959 .

[70]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[71]  W. Lowen,et al.  Cohomology of exact categories and (non-)additive sheaves , 2011, 1102.5756.

[72]  C. Barwick On exact $\infty$-categories and the Theorem of the Heart , 2012, Compositio Mathematica.

[73]  Zadour Khachadourian,et al.  On the homology theory of modules , 1970 .