Manifold learning techniques and model reduction applied to dissipative PDEs

We link nonlinear manifold learning techniques for data analysis/compression with model reduction techniques for evolution equations with time scale separation. In particular, we demonstrate a `"nonlinear extension" of the POD-Galerkin approach to obtaining reduced dynamic models of dissipative evolution equations. The approach is illustrated through a reaction-diffusion PDE, and the performance of different simulators on the full and the reduced models is compared. We also discuss the relation of this nonlinear extension with the so-called "nonlinear Galerkin" methods developed in the context of Approximate Inertial Manifolds.

[1]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[2]  I. Kevrekidis,et al.  Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: effective description via diffusion maps. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[4]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[5]  L. Sirovich,et al.  Coherent structures and chaos: A model problem , 1987 .

[6]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[7]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[8]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[9]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[10]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .

[11]  J. D. Ramshaw Partial chemical equilibrium in fluid dynamics , 1980 .

[12]  I. Kevrekidis,et al.  Equation-free/Galerkin-free POD-assisted computation of incompressible flows , 2005 .

[13]  Lydia E Kavraki,et al.  Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction , 2006, Proc. Natl. Acad. Sci. USA.

[14]  Christophe Vandekerckhove,et al.  An Efficient Newton-Krylov Implementation of the Constrained Runs Scheme for Initializing on a Slow Manifold , 2009, J. Sci. Comput..

[15]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[16]  Sue Ellen Haupt,et al.  Low‐order models, initialization, and the slow manifold , 1995 .

[17]  Michael S. Jolly,et al.  Explicit construction of an inertial manifold for a reaction diffusion equation , 1989 .

[18]  Ioannis G Kevrekidis,et al.  Variable-free exploration of stochastic models: a gene regulatory network example. , 2006, The Journal of chemical physics.

[19]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[20]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[21]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[23]  Ioannis G. Kevrekidis,et al.  Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .

[24]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[25]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[26]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[27]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[28]  Marc R. Roussel,et al.  On the geometry of transient relaxation , 1991 .

[29]  Bengt Fornberg,et al.  Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..

[30]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jens Lorenz,et al.  On the existence of slow manifolds for problems with different timescales , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[33]  J. Keck Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems☆ , 1990 .

[34]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[35]  R. Coifman,et al.  Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions , 2006 .

[36]  Edriss S. Titi,et al.  On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .

[37]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[38]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[39]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[40]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[41]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[42]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[43]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[44]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .

[45]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .