Effect of Exhaust Magnetic Field in a Helicon Double-Layer Thruster Operating in Xenon

A xenon ion beam is spatially characterized by using a retarding-field energy analyzer positioned 7 cm downstream of a helicon double-layer thruster (HDLT) operating at 500-W radio-frequency power, 0.07-mtorr (9.33 times 10-3Pa) gas pressure, and with an exhaust magnetic field diverging from a maximum of about 142 G (0.0142 T) inside the thruster to about 26 G (0.026 T) at the probe location. The beam is formed by acceleration through the potential drop of a double layer (DL). It is found that, for constant operating pressure, increasing the maximum exhaust magnetic field from about 60-236 G (0.006-0.0236 T) induces an increase of both the ion-beam energy and the ion-beam-to-downstream-plasma-flux ratio, both indicators of an increased thruster efficiency. Hence, the specific impulse can be controlled by using the exhaust magnetic field in the HDLT.

[1]  E. Choueiri Plasma oscillations in Hall thrusters , 2001 .

[2]  C. Charles,et al.  Experimental evidence of a double layer in a large volume helicon reactor. , 2005, Physical review letters.

[3]  C. Charles,et al.  A supersonic ion beam generated by a current-free helicon double-layer , 2003 .

[4]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[5]  C. Charles Spatially resolved energy analyzer measurements of an ion beam on the low potential side of a current-free double-layer , 2005, IEEE Transactions on Plasma Science.

[6]  C. Charlesa High source potential upstream of a current-free electric double layer , 2005 .

[7]  C. Charles,et al.  Observations of ion-beam formation in a current-free double layer. , 2005, Physical review letters.

[8]  S. Torven,et al.  Observations of electric double layers in a magnetised plasma column , 1979 .

[9]  Cristina Bramanti,et al.  Initial Experiments on a Dual-Stage 4-Grid Ion Thruster for Very High Specific Impulse and Power , 2006 .

[10]  C. Charles,et al.  Ion beam formation in a low-pressure geometrically expanding argon plasma , 2007 .

[11]  R. S. Robinson,et al.  Physics of closed drift thrusters , 1999 .

[12]  N. Fisch,et al.  Effects of segmented electrode in Hall current plasma thrusters , 2001 .

[13]  A. Fruchtman,et al.  Electric field in a double layer and the imparted momentum. , 2006, Physical review letters.

[14]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[15]  M. Lieberman,et al.  Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer , 2000 .

[16]  A. Gallimore,et al.  Internal plasma potential profiles in a laboratory-model Hall thruster , 2001 .

[17]  Michael A. Lieberman,et al.  Principles of Plasma Discharges and Materials Processing, 2nd Edition , 2003 .

[18]  F. Levinton,et al.  Publisher’s Note: “Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device” [Phys. Plasmas 10, 2593 (2003)] , 2003 .

[19]  M. Lieberman,et al.  A theory for formation of a low pressure, current-free double layer , 2006, Physical review letters.

[20]  C. Charles,et al.  STRESS REDUCTION IN SILICON DIOXIDE LAYERS BY PULSING AN OXYGEN/SILANE HELICON DIFFUSION PLASMA , 1998 .

[21]  C. Charles Hydrogen ion beam generated by a current-free double layer in a helicon plasma , 2004 .

[22]  C. Charles,et al.  The ion velocity distribution function in a current-free double layer , 2005 .

[23]  N. Plihon,et al.  Experimental investigation of double layers in expanding plasmas , 2007, 1505.06303.

[24]  D. Ventura,et al.  Evolution of the parallel and perpendicular ion velocity distribution functions in pulsed helicon plasma sources obtained by time resolved laser induced fluorescence , 2005 .

[25]  Francis F. Chen Physical mechanism of current-free double layers , 2006 .

[26]  Plasma acceleration from radio-frequency discharge in dielectric capillary , 2006 .

[27]  L. Garrigues,et al.  Optimized atom injection in a Hall effect thruster , 2004 .

[28]  N. Hershkowitz Review of recent laboratory double layer experiments , 1985 .

[29]  C. Charles,et al.  Measurement of the energy distribution of trapped and free electrons in a current-free double layer , 2007 .

[30]  C. Charles,et al.  One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma , 2005 .

[31]  Christine Charles,et al.  Xenon ion beam characterization in a helicon double layer thruster , 2006 .

[32]  C. Charles,et al.  Time development of a current-free double-layer , 2004 .

[33]  Boyd Blackwell,et al.  Ion Detachment in the Helicon Double-Layer Thruster Exhaust Beam , 2006 .

[34]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[35]  M. Keidar,et al.  On the potential distribution in Hall thrusters , 2004 .

[36]  Xenon Ion Beam Detachment From a Helicon Double Layer Thruster , 2008, IEEE Transactions on Plasma Science.

[37]  C. Charles,et al.  The magnetic-field-induced transition from an expanding plasma to a double layer containing expanding plasma , 2007 .

[38]  W. Manheimer,et al.  Plasma acceleration by area expansion , 2001 .