Linear-scaling time-dependent density-functional theory
暂无分享,去创建一个
A linear-scaling time-dependent density-functional theory is developed to evaluate the optical response of large molecular systems. The two-electron Coulomb integrals are evaluated with the fast multipole method, and the calculation of exchange-correlation quadratures utilizes the locality of exchange-correlation functional within the adiabatic local density approximation and the integral prescreening technique. Instead of many-body wave function, the equation of motion is solved for the reduced single-electron density matrix in the time domain. Based on its ``nearsightedness'', the reduced density matrix cutoffs are employed to ensure that the computational time scales linearly with the system size. As an illustration, the resulting time-dependent density-functional theory is used to calculate the absorption spectra of linear alkanes, and the linear scaling of computational time versus the system size is clearly demonstrated.