λP systems and typed λ-calculus

In this extended abstract, we recast first the implementation of tree operations in P systems with λP systems and simulation of pure λ-calculus as proposed in [6]. Further, we indicate a similar way to implement Godel's T-systems. This provides a family of P systems with each system implementing a family of total recursive functions. The union of the implemented functions coincides with the set of provably total recursive functions in Peano arithmetic.

[1]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[2]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[3]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[4]  Maurice Margenstern,et al.  Tree Operations in P Systems and λ-Calculus , 2003 .

[5]  Jean-Louis Krivine,et al.  Lambda-calculus, types and models , 1993, Ellis Horwood series in computers and their applications.

[6]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[7]  Andrei Paun,et al.  On P Systems with Active Membranes , 2000, UMC.

[8]  Kurt Gödel,et al.  On a hitherto unexploited extension of the finitary standpoint , 1980, J. Philos. Log..

[9]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[10]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[11]  K. G. Subramanian,et al.  Tissue-like P Systems with Active Membranes for Picture Generation , 2003, Fundam. Informaticae.

[12]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[13]  Gheorghe Paun P Systems with Active Membranes: Attacking NP-Complete Problems , 2001, J. Autom. Lang. Comb..

[14]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.