The Elevator Dispatching Problem

In this paper, we formulate the elevator dispatching problem as a stochastic bilevel optimization problem, where a group of elevators serves a set of transportation requests. In the upper level, the requests are assigned to the elevators. In the lower level, the route for each elevator is solved separately. The lower level problem predicts the optimal system state for a finite planning horizon according to stochastic demand. The demand affects the cost of traveling, capacity constraints, and the upper level payoff function. To solve the problem in real time, we use a genetic algorithm to optimize the upper level assignments. In the lower level optimization, we use the certainty equivalent control scheme, where stochastic quantities are replaced by their expected values. Extensive numerical simulations carried out in this paper, together with commercial installations, verify the applicability of our new on-line optimization algorithm.

[1]  Marja-Liisa Siikonen,et al.  Elevator Traffic Simulation , 1993, Simul..

[2]  Marja-Liisa Siikonen,et al.  Elevator traffic simulation procedure , 2009 .

[3]  Christos G. Cassandras,et al.  The Elevator dispatching Problem: Hybrid System Modeling and receding horizon control , 2006, ADHS.

[4]  Gilbert Laporte,et al.  A Priori Optimization of the Probabilistic Traveling Salesman Problem , 1994, Oper. Res..

[5]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[6]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[7]  Kenneth Sörensen,et al.  Route stability in vehicle routing decisions: a bi-objective approach using metaheuristics , 2006, Central Eur. J. Oper. Res..

[8]  Tapio Tyni,et al.  Evolutionary bi-objective optimisation in the elevator car routing problem , 2006, Eur. J. Oper. Res..

[9]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[10]  Bruce L. Golden,et al.  VEHICLE ROUTING: METHODS AND STUDIES , 1988 .

[11]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[12]  Gilbert Laporte,et al.  STOCHASTIC VEHICLE ROUTING. , 1996 .

[13]  Michel Gendreau,et al.  Diversion Issues in Real-Time Vehicle Dispatching , 2000, Transp. Sci..

[14]  Jason D. Papastavrou,et al.  A stochastic and dynamic model for the single-vehicle pick-up and delivery problem , 1999, Eur. J. Oper. Res..

[15]  Marja-Liisa Siikonen,et al.  ON TRAFFIC PLANNING METHODOLOGY , 2000 .

[16]  Marja-Liisa Siikonen,et al.  Planning and Control Models for Elevators in High-Rise Buildings , 1997 .

[17]  H. Mahmassani,et al.  Path search techniques for transportation networks with time-dependent, stochastic arc costs , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Michel Gendreau,et al.  THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC CUSTOMERS AND DEMANDS , 1992 .

[20]  Michel Gendreau,et al.  Arc routing problems with time-dependent service costs , 2007, Eur. J. Oper. Res..

[21]  Thomas Bartz-Beielstein,et al.  Control of Traffic Systems in Buildings , 2006 .

[22]  Shunji Tanaka,et al.  Dynamic optimization of the operation of single-car elevator systems with destination hall call registration: Part I. Formulation and simulations , 2005, Eur. J. Oper. Res..

[23]  Richard C. Larson,et al.  Urban Operations Research , 1981 .

[24]  Michel Gendreau,et al.  Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching , 1999, Transp. Sci..

[25]  Christos G. Cassandras,et al.  Optimal dispatching control for elevator systems during uppeak traffic , 1997, IEEE Trans. Control. Syst. Technol..

[26]  Harri Ehtamo,et al.  Optimal control of double-deck elevator group using genetic algorithm , 2003 .

[27]  Maurice Queyranne,et al.  The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling , 1978, Oper. Res..

[28]  Gilbert Laporte,et al.  An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers , 1995, Transp. Sci..

[29]  Patrick Jaillet,et al.  A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited , 1988, Oper. Res..

[30]  Hajime Kita,et al.  Adaptive Optimal Elevator Group Control by Use of Neural Networks , 1994 .

[31]  Gina Carol Barney,et al.  Elevator traffic handbook , 2002 .

[32]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[33]  Michel Gendreau,et al.  Vehicle dispatching with time-dependent travel times , 2003, Eur. J. Oper. Res..

[34]  Dimitris Bertsimas,et al.  A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane , 1991, Oper. Res..

[35]  Gilbert Laporte,et al.  The Vehicle Routing Problem with Stochastic Travel Times , 1992, Transp. Sci..

[36]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[37]  Kotaro Hirasawa,et al.  Optimal hall call assignment method of elevator group supervisory control system , 1978 .

[38]  N. A. Alexandris,et al.  Statistical models in lift systems , 1977 .

[39]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[40]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[41]  M. Yadin,et al.  Optimal control of elevators , 1977 .

[42]  Marja-Liisa Siikonen,et al.  PASSENGER TRAFFIC FLOW SIMULATION IN TALL BUILDINGS , 2007 .

[43]  Patrick Jaillet,et al.  A Priori Optimization , 1990, Oper. Res..

[44]  John N. Tsitsiklis,et al.  Dynamic Shortest Paths in Acyclic Networks with Markovian Arc Costs , 1993, Oper. Res..