The homotopy perturbation method for the Black–Scholes equation

The homotopy perturbation method is designed to obtain a quick and accurate solution to the Black–Scholes equation and boundary conditions for a European option pricing problem. The problem of pricing a European option can be cast a partial differential equation. The analytical solution of the equation is calculated in the form of a convergent power series with easily computable components.

[1]  A. Yildirim,et al.  On the solution of the nonlinear Korteweg–de Vries equation by the homotopy perturbation method , 2009 .

[2]  Robert M Corless,et al.  Compact finite difference method for American option pricing , 2007 .

[3]  E. Blum Numerical analysis and computation theory and practice , 1972 .

[4]  Ji-Huan He,et al.  The homotopy perturbation method for nonlinear oscillators with discontinuities , 2004, Appl. Math. Comput..

[5]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[6]  Ji-Huan He Homotopy Perturbation Method for Bifurcation of Nonlinear Problems , 2005 .

[7]  Daniel Z. Zanger Convergence of a Least‐Squares Monte Carlo Algorithm for Bounded Approximating Sets , 2009 .

[8]  Gilles Pagès,et al.  Optimal Quantization for the Pricing of Swing Options , 2007, 0705.2110.

[9]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[10]  Nathan Coelen Black-Scholes Option Pricing Model , 2002 .

[11]  R. Elliott,et al.  Approximations for the values of american options , 1991 .

[12]  O. Abdulaziz,et al.  Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates , 2009 .

[13]  S. Jacka Optimal Stopping and the American Put , 1991 .

[14]  Georges Courtadon,et al.  A More Accurate Finite Difference Approximation for the Valuation of Options , 1982, Journal of Financial and Quantitative Analysis.

[15]  C. Chiarella,et al.  American Call Options Under Jump‐Diffusion Processes – A Fourier Transform Approach , 2009 .

[16]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[17]  J. Biazar,et al.  Exact solutions for nonlinear Burgers' equation by homotopy perturbation method , 2009 .

[18]  Ahmet Yildirim,et al.  Application of He's semi-inverse method to the nonlinear Schrödinger equation , 2007, Comput. Math. Appl..

[19]  Ronald Smith Optimal and near-optimal advection—diffusion finite-difference schemes III. Black—Scholes equation , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  G. Barone-Adesi The saga of the American put , 2005 .

[21]  John van der Hoek,et al.  The valuation of American options with the method of lines , 1997 .

[22]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[23]  I. Kim The Analytic Valuation of American Options , 1990 .

[24]  M. Rathinam,et al.  Trader Behavior and its Effect on Asset Price Dynamics , 2009 .

[25]  Ji-Huan He Homotopy perturbation technique , 1999 .

[26]  P. Carr,et al.  ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .