Ultrabroadband Er:fiber lasers

The state of the art of ultrafast Er:fiber technology is reviewed. Such lasers are increasingly used for generation of ultrabroadband and widely tunable pulse trains. Er:fiber sources prove to be flexible, compact and robust with important applications in fundamental and interdisciplinary sciences. After a short overview of different oscillator and amplifier designs the discussion focuses on coherent and tailored supercontinuum generation in highly nonlinear germanosilicate fibers. This approach enables a tuning range spanning from the visible to the mid infrared, synthesis of single‐cycle light pulses and passive locking of the carrier‐envelope phase.

[1]  E. Ferrando-May,et al.  Imaging of the DNA damage‐induced dynamics of nuclear proteins via nonlinear photoperturbation , 2013, Journal of biophotonics.

[2]  Erik Benkler,et al.  Endless frequency shifting of optical frequency comb lines. , 2013, Optics express.

[3]  R. Miller,et al.  Mid-infrared optical parametric amplifier based on a LGSe crystal and pumped at 1.6 μm. , 2012, Optics express.

[4]  A. Pashkin,et al.  Nonperturbative interband response of a bulk InSb semiconductor driven off resonantly by terahertz electromagnetic few-cycle pulses. , 2012, Physical review letters.

[5]  F. Kärtner,et al.  Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. , 2012, Optics letters.

[6]  N. Manson,et al.  Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. , 2012, Physical review letters.

[7]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[8]  S. Thongrattanasiri,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[9]  Alfred Leitenstorfer,et al.  Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system. , 2012, Optics letters.

[10]  Ulrich Hohenester,et al.  Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. , 2012, Nano letters.

[11]  Brandon Botzer,et al.  Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. , 2012, Optics express.

[12]  Alfred Leitenstorfer,et al.  Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses , 2011 .

[13]  A. Andrianov,et al.  All-fiber design of erbium-doped laser system for tunable two-cycle pulse generation. , 2011, Optics express.

[14]  Alfred Leitenstorfer,et al.  All-passive phase locking of a compact Er:fiber laser system. , 2011, Optics letters.

[15]  J. Faist,et al.  Photo-Dember terahertz emitter excited with an Er:fiber laser , 2011 .

[16]  Alfred Leitenstorfer,et al.  Coherent terahertz control of antiferromagnetic spin waves , 2011 .

[17]  Alfred Leitenstorfer,et al.  Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. , 2010, Optics letters.

[18]  Zhigang Zhang,et al.  37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate. , 2010, Optics letters.

[19]  G. Cerullo,et al.  Single-cycle multiterahertz transients with peak fields above 10 MV/cm. , 2010, Optics letters.

[20]  Günter Steinmeyer,et al.  Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise , 2010 .

[21]  Sakae Kawato,et al.  A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. , 2010, Optics express.

[22]  Roberta Ramponi,et al.  Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator. , 2010, Optics letters.

[23]  E. Ferrando-May,et al.  Specific local induction of DNA strand breaks by infrared multi-photon absorption , 2009, Nucleic acids research.

[24]  Alfred Leitenstorfer,et al.  Synthesis of a single cycle of light with compact erbium-doped fibre technology , 2010 .

[25]  R. Bratschitsch,et al.  Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. , 2009, Physical review letters.

[26]  A. Andrianov,et al.  Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup. , 2009, Optics letters.

[27]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[28]  Alfred Leitenstorfer,et al.  Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system. , 2009, Optics letters.

[29]  L. Nenadovic,et al.  Rapid and precise absolute distance measurements at long range , 2009 .

[30]  S. Mahapatra,et al.  Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot , 2009 .

[31]  D. Tang,et al.  Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. , 2009, Optics express.

[32]  Jens Biegert,et al.  Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz. , 2009, Optics express.

[33]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  R. Ramponi,et al.  Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media. , 2009, Optics letters.

[35]  Alfred Leitenstorfer,et al.  8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation. , 2009, Optics express.

[36]  Alfred Leitenstorfer,et al.  Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz , 2008 .

[37]  Alfred Leitenstorfer,et al.  Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. , 2008, Optics letters.

[38]  Roberta Ramponi,et al.  Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. , 2008 .

[39]  Scott A. Diddams,et al.  Recent atomic clock comparisons at NIST , 2008 .

[40]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[41]  K. Itoh,et al.  All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. , 2008, Optics express.

[42]  A. Ruehl,et al.  Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. , 2008, Optics express.

[43]  A. Jeromin,et al.  Highly versatile confocal microscopy system based on a tunable femtosecond Er:fiber source , 2008, Journal of biophotonics.

[44]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[45]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[46]  Alfred Leitenstorfer,et al.  Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser. , 2007, Optics letters.

[47]  C. Manzoni,et al.  Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals. , 2007 .

[48]  Holger Schlarb,et al.  Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator , 2007 .

[49]  J. Biegert,et al.  Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source. , 2007, Optics letters.

[50]  David J. Jones,et al.  Remote distribution of a mode-locked pulse train with sub 40-as jitter. , 2006, Optics express.

[51]  D. Träutlein,et al.  Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source. , 2006, Optics letters.

[52]  A. Leitenstorfer,et al.  Highly efficient second, third and fourth harmonic generation from a two- branch femtosecond erbium fiber source. , 2006, Optics express.

[53]  Gesine Grosche,et al.  Long term comparison of two fiber based frequency comb systems. , 2005, Optics express.

[54]  I Hartl,et al.  An optimized Er gain band all-fiber chirped pulse amplification system. , 2004, Optics express.

[55]  Gesine Grosche,et al.  Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. , 2004, Optics express.

[56]  Hideyuki Sotobayashi,et al.  Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm. , 2004, Optics express.

[57]  H Matsumoto,et al.  Frequency metrology with a turnkey all-fiber system. , 2004, Optics letters.

[58]  M Lehtonen,et al.  Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. , 2004, Optics express.

[59]  K Feder,et al.  High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. , 2004, Optics express.

[60]  Rüdiger Paschotta,et al.  Noise of mode-locked lasers (Part I): numerical model , 2004 .

[61]  Alfred Leitenstorfer,et al.  Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source. , 2004, Optics letters.

[62]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[63]  Nathan R Newbury,et al.  Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. , 2004, Optics letters.

[64]  Norihiko Nishizawa,et al.  Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. , 2004, Optics express.

[65]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[66]  C. D. de Matos,et al.  All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber. , 2003, Optics express.

[67]  Feng-Lei Hong,et al.  Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement using the second harmonic generation of a mode-locked fiber laser , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[68]  Alfred Leitenstorfer,et al.  Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution. , 2003, Optics express.

[69]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[70]  Anton Husakou,et al.  Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers , 2002 .

[71]  Takao Fuji,et al.  Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. , 2002, Physical review letters.

[72]  M. Nisoli,et al.  Absolute-phase phenomena in photoionization with few-cycle laser pulses , 2001, Nature.

[73]  Jun Ye,et al.  Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers , 2001, Science.

[74]  Norihiko Nishizawa,et al.  Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers , 2001 .

[75]  P.K. Cheo,et al.  Clad-pumped Yb,Er codoped fiber lasers , 2001, IEEE Photonics Technology Letters.

[76]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[77]  F. Tauser,et al.  Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz , 2000 .

[78]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[79]  F. Krausz,et al.  Intense few-cycle laser fields: Frontiers of nonlinear optics , 2000 .

[80]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[81]  Martin M. Fejer,et al.  Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping , 2000 .

[82]  M N Islam,et al.  Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber. , 1999, Applied optics.

[83]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[84]  J. Soto-Crespo,et al.  Multisoliton regime of pulse generation by lasers passively mode locked with a slow saturable absorber , 1999 .

[85]  C P Grover,et al.  Modified white-light Mach-Zehnder interferometer for direct group-delay measurements. , 1998, Applied optics.

[86]  Eiji Yoshida,et al.  Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber , 1998 .

[87]  Scott A. Diddams,et al.  Dispersion measurements with white-light interferometry , 1996 .

[88]  D N Payne,et al.  Femtosecond pulse amplification in cladding-pumped fibers. , 1995, Optics letters.

[89]  M. Nakazawa,et al.  Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high-power erbium-doped fiber amplifier. , 1995, Optics letters.

[90]  Anatoly B. Grudinin,et al.  Passive harmonic mode locking of soliton fiber lasers , 1995 .

[91]  I Bennion,et al.  High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings. , 1995, Optics letters.

[92]  Hermann A. Haus,et al.  Soliton versus nonsoliton operation of fiber ring lasers , 1994 .

[93]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[94]  M. Fermann,et al.  Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. , 1993, Optics letters.

[95]  Hermann A. Haus,et al.  Noise of mode-locked lasers , 1993, Optical Society of America Annual Meeting.

[96]  D. Richardson,et al.  Polarisation maintaining figure 8 laser , 1993 .

[97]  H. Haus,et al.  Self-starting additive pulse mode-locked erbium fibre ring laser , 1992 .

[98]  D. Richardson,et al.  Amplification of femtosecond pulses in a passive, all-fiber soliton source. , 1992, Optics letters.

[99]  T. Newson,et al.  Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation , 1992 .

[100]  S. Kelly,et al.  Characteristic sideband instability of periodically amplified average soliton , 1992 .

[101]  Agrawal Optical pulse propagation in doped fiber amplifiers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[102]  I. Duling All-fiber ring soliton laser mode locked with a nonlinear mirror. , 1991, Optics letters.

[103]  S V Chernikov,et al.  Ultrashort-pulse propagation in optical fibers. , 1990, Optics letters.

[104]  M. Fermann,et al.  Nonlinear amplifying loop mirror. , 1990, Optics letters.

[105]  H. Yamada,et al.  Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light. , 1990, Optics letters.

[106]  V. A. Semenov,et al.  Amplification of femtosecond pulses in Er/sup 3+/-doped single-mode optical fibres , 1990 .

[107]  Keith J. Blow,et al.  Femtosecond soliton amplification in erbium doped silica fibre , 1990 .

[108]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[109]  D W Hall,et al.  Mode-locked erbium-doped fiber laser with soliton pulse shaping. , 1989, Optics letters.

[110]  K. Suzuki,et al.  Subpicosecond soliton amplification and transmission using Er(3+)-doped fibers pumped by InGaAsP laser diodes. , 1989, Optics letters.

[111]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[112]  M. Wegener,et al.  Broad bandwidths from frequency-shifting solitons in fibers. , 1989, Optics letters.

[113]  M. W. Phillips,et al.  Active mode-locking of an Yb:Er fibre laser , 1989 .

[114]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[115]  Heinz P. Weber,et al.  Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber , 1987 .

[116]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[117]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[118]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[119]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[120]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[121]  Hasegawa,et al.  Observation of modulational instability in optical fibers. , 1986, Physical review letters.

[122]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .

[123]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[124]  A. Hasegawa,et al.  Tunable coherent IR and FIR sources utilizing modulational instability , 1980 .

[125]  Chinlon Lin,et al.  New nanosecond continuum for excited-state spectroscopy , 1976 .

[126]  R. Stolen,et al.  Raman Oscillation in Glass Optical Waveguide , 1972 .

[127]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .