Robust eigenvalue placement optimization for high-order descriptor systems in a union region with disjoint discs based on harmony search algorithm

Abstract In this paper, a new optimization scheme is proposed for robust eigenvalue placement in high-order descriptor systems in union region based on harmony search algorithm. The specification on the closed-loop eigenvalues is given in terms of robust union region stability constraints. The radius or the position of the subregions can be arbitrarily specified in complex plane for the transient performance request. By using exact eigenvalue placement theory and combining the harmony search algorithm, the robust eigenvalue placement for high-order descriptor linear system in union region is converted into a global dynamical optimization problem. Further, the eigenstructure of the closed-loop system matrix can be optimized with better robustness bound (i.e., the spectral upper bound of the maximum allowable perturbation or uncertainty for the system matrices) by the proposed scheme without imposing restriction on the differentiability of the nonlinear robust measure index function. Consequently, the robust feedback controller can be obtained by dynamically optimizing the eigenvalue and eigenvector pairs of the system. Finally, the simulation results illustrate the effectiveness and superiority of the proposed method.

[1]  Xinyi Le,et al.  Neurodynamics-Based Robust Pole Assignment for High-Order Descriptor Systems , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Taha H. S. Abdelaziz,et al.  Robust pole assignment using velocity-acceleration feedback for second-order dynamical systems with singular mass matrix. , 2015, ISA transactions.

[4]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[5]  Jing Wang,et al.  ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR LINEAR SYSTEMS , 2012 .

[6]  Panos M. Pardalos,et al.  An adaptive fuzzy controller based on harmony search and its application to power plant control , 2013 .

[7]  Jaroslav Kautsky,et al.  Robust pole assignment in singular control systems , 1989 .

[8]  Bin Zhou,et al.  Parametric Pole Assignment and Robust Pole Assignment for Discrete-Time Linear Periodic Systems , 2010, SIAM J. Control. Optim..

[9]  Leandro Fleck Fadel Miguel,et al.  Damage detection under ambient vibration by harmony search algorithm , 2012, Expert Syst. Appl..

[10]  Olivier Bachelier,et al.  Robust Matrix Root-Clustering Analysis through Extended KYP Lemma , 2006, SIAM J. Control. Optim..

[11]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[12]  Steven Li,et al.  Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm , 2015, Comput. Oper. Res..

[13]  Li Lee,et al.  Robust D-admissibility in generalized LMI regions for descriptor systems , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[14]  L. Rambault,et al.  Robust pole placement by output feedback using a genetic algorithm , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[15]  Guang-Ren Duan,et al.  Robust pole assignment in descriptor systems via proportional plus partial derivative state feedback , 1999 .

[16]  N. Poursalehi,et al.  Self-adaptive global best harmony search algorithm applied to reactor core fuel management optimization , 2013 .

[17]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[18]  Jun Wang,et al.  Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment , 2002, IEEE Trans. Neural Networks.

[19]  Tonghua Zhang,et al.  Overview of Applications and Developments in the Harmony Search Algorithm , 2009 .

[20]  Mauro Dell'Orco,et al.  A Harmony Search Algorithm approach for optimizing traffic signal timings , 2013 .

[21]  Shaojun Li,et al.  An improved AEA algorithm with Harmony Search(HSAEA) and its application in reaction kinetic parameter estimation , 2013, Appl. Soft Comput..

[22]  Jun Wang,et al.  Robust Pole Assignment for Synthesizing Feedback Control Systems Using Recurrent Neural Networks , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[23]  Kevin Guelton,et al.  Robust pole placement controller design in LMI region for uncertain and disturbed switched systems , 2008 .

[24]  Olivier Bachelier,et al.  Pole placement in non connected regions for descriptor models , 2011, Math. Comput. Simul..

[25]  N. Nichols,et al.  Eigenstructure assignment in descriptor systems , 1986 .

[26]  Qiang Shen,et al.  Feature Selection With Harmony Search , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Rajesh Kumar,et al.  Real-Time Implementation of a Harmony Search Algorithm-Based Clustering Protocol for Energy-Efficient Wireless Sensor Networks , 2014, IEEE Transactions on Industrial Informatics.

[28]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[29]  Robin J. Evans,et al.  Optimal pole placement design for SISO discrete-time systems , 1996, IEEE Trans. Autom. Control..

[30]  Jianhua Wu,et al.  An effective global harmony search algorithm for reliability problems , 2011, Expert Syst. Appl..

[31]  James Lam,et al.  A gradient flow approach to the robust pole-placement problem , 1995 .

[32]  John E. Mottershead,et al.  Block-decoupling vibration control using eigenstructure assignment , 2016 .

[33]  Jiang Qian,et al.  Robust partial pole assignment problem for high order control systems , 2012, Autom..

[34]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[35]  Nasser R. Sabar,et al.  A harmony search algorithm for nurse rostering problems , 2013, Inf. Sci..

[36]  Hai-Hua Yu,et al.  Robust pole assignment in high-order descriptor linear systems via proportional plus derivative state feedback , 2008 .

[37]  Vahid Vahidinasab,et al.  A modified harmony search method for environmental/economic load dispatch of real-world power systems , 2014 .

[38]  Biao Zhang,et al.  Parametric eigenstructure assignment for descriptor systems via proportional plus derivative state feedback , 2011 .

[39]  S. O. Degertekin Improved harmony search algorithms for sizing optimization of truss structures , 2012 .

[40]  Jun Wang,et al.  A multilayer recurrent neural network for on-line synthesis of minimum-norm linear feedback control systems via pole assignment , 1996, Autom..

[41]  Biswa Nath Datta,et al.  Minimum norm partial quadratic eigenvalue assignment with time delay in vibrating structures using the receptance and the system matrices , 2013 .

[42]  Quan-Ke Pan,et al.  Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling , 2014, Inf. Sci..

[43]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[44]  Z. Geem Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search , 2015 .

[45]  Huajiang Ouyang,et al.  Static output feedback for partial eigenstructure assignment of undamped vibration systems , 2016 .

[46]  Zong Woo Geem,et al.  A survey on applications of the harmony search algorithm , 2013, Eng. Appl. Artif. Intell..

[47]  Hao Zhang,et al.  Multirate parallel distributed compensation of a cluster in wireless sensor and actor networks , 2016, Int. J. Syst. Sci..

[48]  Javier Del Ser,et al.  Evaluating the Internationalization Success of Companies Through a Hybrid Grouping Harmony Search—Extreme Learning Machine Approach , 2012, IEEE Journal of Selected Topics in Signal Processing.

[49]  Shyi-Kae Yang,et al.  Robust pole-clustering of structured uncertain systems in union of disjointed circular regions , 2011, Appl. Math. Comput..

[50]  O. Bachelier,et al.  Robust S-regularity of matrix pencils applied to the analysis of descriptor models , 2011 .

[51]  Olivier Bachelier,et al.  Robust root-clustering of a matrix in intersections or unions of regions: Addendum , 2004, Proceedings of the 44th IEEE Conference on Decision and Control.

[52]  Guang-Ren Duan,et al.  Robust pole assignment in descriptor linear systems via state feedback , 2001, 2001 European Control Conference (ECC).

[53]  Michael Sebek,et al.  Robust pole placement for second-order systems: an LMI approach , 2003, Kybernetika.

[54]  Sakti Prasad Ghoshal,et al.  Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm , 2012 .

[55]  A. Kaveh,et al.  Discrete cost optimization of composite floor system using social harmony search model , 2012, Appl. Soft Comput..

[56]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[57]  Lale Özbakir,et al.  Training neural networks with harmony search algorithms for classification problems , 2012, Eng. Appl. Artif. Intell..

[58]  B. Zhang,et al.  Parametric eigenstructure assignment by state feedback in descriptor systems , 2008 .

[59]  Steven Li,et al.  Improved novel global harmony search with a new relaxation method for reliability optimization problems , 2015, Inf. Sci..

[60]  Amitava Chatterjee,et al.  Harmony search algorithm and Lyapunov theory based hybrid adaptive fuzzy controller for temperature control of air heater system with transport-delay , 2014, Appl. Soft Comput..

[61]  James Lam,et al.  Multiobjective controller synthesis via eigenstructure assignment with state feedback , 2016, Int. J. Syst. Sci..

[62]  O. Bachelier,et al.  Robust root-clustering analysis in a union of subregions for descriptor systems , 2008 .