Nuclear Magnetic Resonance Imaging, a New Approach to the Investigation of Refractory Temporal Lobe Epilepsy

La résonance magnétique nucléaire est une technique non invasive d'imagerie cérébrale utilisant les signaux produits par des champs magnétiques et des radioondes. 16 patients présentant une épilepsie due lobe temporal (TLE) réfractaire ont eu une imagerie par résonance magnétique (MRI) pendant leur exploration en vue d'un traitement chirurgical éventuel. Ces images et celles de 10 contrôles normaux ont été interprétés à l'aveugle, et les résultats des patients TLE ont été comparés aux données de l'EEG et du scanner. 14 patients, comparativement aux sujets normaux, avaient l'une ou plus d'une des modifications suivantes: petit lobe temporal, structures temporales mésiales petites, petit hémisphère, temps de relaxation “spin‐spin” prolongé dans la partie mésiale du lobe temporal. Ces données étaient positivement corrélées au siége du foyer EEG chez 11 patients. Des cornes temporales élargies ou asymétriques ont été trouvées avec une égale fréquence chez les patients et chez les contrôles et n‘étaient pas corrélées avec le siége du foyer EEG. Les scanners montrent moins ces modifications que la MRI. Les corrélations entre les modifications de la MRI et l'histopathologie des lobes temporaux réséqués étaient faibles. La MRI révèle des altérations structurelles et de probables altérations fonctionnelles qui peuvent aider à la localisation d'un foyer épileptogène dans le lobe temporal de patients présentant des crises partielles complexes rebelles au traitement médicamenteux.

[1]  Paul C. Lauterbur,et al.  Image formation by induced local interactions , 1973 .

[2]  M. Reivich,et al.  Blood flow metabolism couple in brain. , 1974, Research publications - Association for Research in Nervous and Mental Disease.

[3]  L Kaufman,et al.  Nuclear magnetic resonance imaging in multiple sclerosis. , 1983, Annals of neurology.

[4]  A. Wyler,et al.  Preoperative CT diagnosis of mesial temporal sclerosis for surgical treatment of epilepsy , 1983, Annals of neurology.

[5]  A. D. Kleyn,et al.  Some Remarks on Vestibular Nystagmus. pp 257–267 , 1939 .

[6]  A. Lorenzo,et al.  Temporary alteration of cerebrovascular permeability to plasma protein during drug-induced seizures. , 1972, The American journal of physiology.

[7]  D. Ingvar,et al.  Regional cerebral blood flow in focal cortical epilepsy. , 1976, Archives of neurology.

[8]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[9]  J. Girvin,et al.  Computed Tomography in Temporal Lobe Epilepsy , 1984, Journal of computer assisted tomography.

[10]  J. A. Parker,et al.  Principles of nuclear magnetic resonance imaging. , 1985, Medical instrumentation.

[11]  Functional localization of epileptogenic lesions , 1983, Trends in Neurosciences.

[12]  J. Simpson NEUROSURGICAL MANAGEMENT OF THE EPILEPSIES , 1976 .

[13]  J. Michenfelder Brain Dysfunction in Metabolic Disorders , 1975 .

[14]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[15]  G M Bydder,et al.  Nuclear Magnetic Resonance (NMR) Imaging in White Matter Disease of the Brain Using Spin‐Echo Sequences , 1983, Journal of computer assisted tomography.

[16]  J. Gore,et al.  Preliminary observations on magnetic resonance imaging in refractory epilepsy. , 1984, Magnetic resonance imaging.

[17]  D. Devivo,et al.  Positive brain scans in children with idiopathic focal epileptic seizures , 1973, Neurology.

[18]  P Gloor,et al.  Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies. , 1975, Advances in neurology.

[19]  W. Oldendorf The Use and Promise of Nuclear Magnetic Resonance Imaging in Epilepsy , 1984, Epilepsia.

[20]  Wilder Penfield,et al.  CEREBRAL BLOOD FLOW DURING INDUCED EPILEPTIFORM SEIZURES IN ANIMALS AND MAN , 1939 .

[21]  R. Shulman,et al.  In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus , 1984, Annals of neurology.

[22]  M. Kaste,et al.  Serial Nuclear Magnetic Resonance (NMR) Imaging in Patients with Cerebral Infarction , 1983, Journal of computer assisted tomography.

[23]  T. Rasmussen Cortical resection in the treatment of focal epilepsy. , 1975, Advances in neurology.

[24]  T. Foster,et al.  A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. , 1984, Medical physics.

[25]  M E Phelps,et al.  Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3 , 1980, Annals of neurology.

[26]  W. Heindel,et al.  Nuclear Magnetic Resonance (NMR) Tomography of the Central Nervous System: Comparison of Two Imaging Sequences , 1983, Journal of computer assisted tomography.

[27]  F. Sakai,et al.  Regional cerebral blood flow and EEG in patients with epilepsy. , 1978, Archives of neurology.

[28]  R. Spetzler,et al.  Acute NMR changes during MCA occlusion: a preliminary study in primates. , 1983, Stroke.

[29]  Paul H. Crandall,et al.  Oxygen availability and blood flow in the temporal lobes during spontaneous epileptic seizures in man , 1976, Brain Research.

[30]  J. Mazziotta,et al.  The Use and Impact of Positron Computed Tomography Scanning in Epilepsy , 1984, Epilepsia.

[31]  R. Herfkens,et al.  Nuclear magnetic resonance imaging of the abnormal live rat and correlations with tissue characteristics. , 1981, Radiology.

[32]  E. Brett,et al.  An assessment of the value and limitations of air encephalography in children with mental retardation and with epilepsy. , 1969, Brain : a journal of neurology.

[33]  D. L. Mcrae,et al.  Radiologic Findings in Temporal Lobe Epilepsy of Non-Tumoral Origin , 1963, Acta radiologica: diagnosis.

[34]  T J Brady,et al.  Principles of nuclear magnetic resonance imaging. , 1982, Radiology.