Dancing in the dark: galactic properties trace spin swings along the cosmic web

A large-scale hydrodynamical cosmological simulation, Horizon-AGN , is used to investigate the alignment between the spin of galaxies and the large-scale cosmic filaments above redshift one. The analysis of more than 150 000 galaxies with morphological diversity in a 100h −1 Mpc comoving box size shows that the spin of low-mass, rotationdominated, blue, star-forming galaxies is preferentially aligned with their neighbouring filaments. High-mass, dispersion-dominated, red, quiescent galaxies tend to have a spin perpendicular to nearby filaments. The reorientation of the spin of massive galaxies is provided by galaxy mergers which are significant in the mass build up of high-mass galaxies. We find that the stellar mass transition from alignment to misalignment happens around 3×10 10 M⊙. This is consistent with earlier findings of a dark matter mass transition for the orientation of the spin of halos (5 × 10 11 M⊙ at the same redshift from Codis et al. 2012). With these numerical evidence, we advocate a scenario in which galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the physical and morphological properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as Active Galactic Nuclei is mandatory to quench in situ star formation in massive galaxies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping galaxy spins misaligned with cosmic filaments. It also promotes diversity amongst galaxy properties.

[1]  M. Kamionkowski,et al.  Testing linear-theory predictions of galaxy formation , 1999, astro-ph/9909266.

[2]  M. Steinmetz,et al.  COSMIC VORTICITY AND THE ORIGIN HALO SPINS , 2012, 1212.1454.

[3]  J. Binney,et al.  Heating cooling flows with jets , 2003, astro-ph/0307471.

[4]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[5]  P. McCarthy,et al.  The Gemini Deep Deep Survey. VIII. When Did Early-Type Galaxies Form? , 2007, astro-ph/0701779.

[6]  G. Lewis,et al.  THE COSMIC HISTORY OF THE SPIN OF DARK MATTER HALOS WITHIN THE LARGE-SCALE STRUCTURE , 2012, 1201.6108.

[7]  V. Springel,et al.  Shaping the galaxy stellar mass function with supernova- and AGN-driven winds , 2012, 1205.2694.

[8]  J. Huchra,et al.  A Slice of the Universe , 1985 .

[9]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[10]  S. M. Fall,et al.  The radius of baryonic collapse in disc galaxy formation , 2012, 1205.0253.

[11]  A. Doroshkevich Spatial structure of perturbations and origin of galactic rotation in fluctuation theory , 1970 .

[12]  D. Thompson,et al.  THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.

[13]  M. Kerscher,et al.  Correlations in the orientations of galaxy clusters , 2002, astro-ph/0209029.

[14]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[15]  R. Teyssier c ○ ESO 2002 Astronomy Astrophysics , 2002 .

[16]  J. Huchra,et al.  Mapping the Universe , 1989, Science.

[17]  B. Weiner,et al.  CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z ∼ 2 , 2012, 1204.4194.

[18]  R. Teyssier,et al.  Initial Conditions For Large Cosmological Simulations , 2008, 0804.3536.

[19]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[20]  P. Schneider,et al.  Intrinsic galaxy shapes and alignments – I. Measuring and modelling COSMOS intrinsic galaxy ellipticities , 2012, 1203.6833.

[21]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[22]  S. J. Lilly,et al.  THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD , 2009, 0911.1126.

[23]  C. Leitherer,et al.  A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.

[24]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[25]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[26]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[27]  N. Padilla,et al.  Angular momentum-large-scale structure alignments in ΛCDM models and the SDSS , 2008, 0804.4477.

[28]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[29]  S. Colombi,et al.  The origin and implications of dark matter anisotropic cosmic infall on ~L * haloes , 2004, astro-ph/0402405.

[30]  R. S. Stoica,et al.  Evidence for spin alignment of spiral and elliptical/S0 galaxies in filaments , 2012, 1207.0068.

[31]  A. Klypin,et al.  Three-dimensional numerical model of the formation of large-scale structure in the Universe , 1983 .

[32]  N. Libeskind,et al.  GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE , 2013, 1308.2816.

[33]  John L. Tonry,et al.  X-Ray Spectra of Active Galactic Nuclei. , 1983 .

[34]  U. Pen,et al.  Detection of Galaxy Spin Alignments in the Point Source Catalog Redshift Survey Shear Field , 2002 .

[35]  R. Teyssier,et al.  The biasing of baryons on the cluster mass function and cosmological parameter estimation , 2013, Monthly Notices of the Royal Astronomical Society.

[36]  Stéphane Colombi,et al.  The fully connected N-dimensional skeleton: probing the evolution of the cosmic web , 2008, ArXiv.

[37]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[38]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[39]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[40]  I. Trujillo,et al.  Detection of the Effect of Cosmological Large-Scale Structure on the Orientation of Galaxies , 2005, astro-ph/0511680.

[41]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[42]  R. Teyssier,et al.  The dusty, albeit ultraviolet bright, infancy of galaxies , 2009, 0912.0376.

[43]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[44]  A. Hopkins,et al.  The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip , 2006, astro-ph/0602088.

[45]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[46]  R. Teyssier,et al.  Coplanar streams, pancakes and angular‐momentum exchange in high‐z disc galaxies , 2011, 1110.6209.

[47]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[48]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[49]  U. Pen,et al.  Cosmic Shear from Galaxy Spins , 1999, The Astrophysical journal.

[50]  M. Boylan-Kolchin,et al.  The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations , 2010, 1001.2304.

[51]  On the filamentary environment of galaxies , 2009, 0910.1728.

[52]  R. Teyssier,et al.  The large‐scale orientations of disc galaxies , 2010, 1002.1964.

[53]  R. Croft,et al.  Weak-Lensing Surveys and the Intrinsic Correlation of Galaxy Ellipticities , 2000, astro-ph/0005384.

[54]  Francisco Valdes,et al.  The Morphologies of Distant Galaxies. I. an Automated Classification System , 1994 .

[55]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[56]  V. Springel,et al.  THE SPIN AND ORIENTATION OF DARK MATTER HALOS WITHIN COSMIC FILAMENTS , 2009, 0906.1654.

[57]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[58]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[59]  J. Blaizot,et al.  Building merger trees from cosmological N-body simulations. Towards improving galaxy formation model , 2009, 0902.0679.

[60]  R. Teyssier,et al.  Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations , 2011, Monthly Notices of the Royal Astronomical Society.

[61]  H. Mo,et al.  ALIGNMENTS OF GALAXIES WITHIN COSMIC FILAMENTS FROM SDSS DR7 , 2013, 1309.3847.

[62]  S. Hatton,et al.  Angular momentum alignment of dark matter haloes , 2001 .

[63]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[64]  M. Steinmetz,et al.  The velocity shear tensor: tracer of halo alignment , 2012, 1210.4559.

[65]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[66]  Julien Devriendt,et al.  Connecting the cosmic web to the spin of dark haloes: implications for galaxy formation , 2012, 1201.5794.

[67]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[68]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.

[69]  J. Einasto,et al.  Giant voids in the Universe , 1982, Nature.

[70]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[71]  D. Pogosyan,et al.  Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift , 2011, 1112.2479.

[72]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) A precise measurement of the galaxy stellar mass function and the abundance of massive galaxies at redshifts 0.5 , 2013, 1303.3808.

[73]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[74]  C. Frenk,et al.  Spin flips – I. Evolution of the angular momentum orientation of Milky Way-mass dark matter haloes , 2011, 1104.0935.

[75]  R. Teyssier,et al.  Jet-regulated cooling catastrophe , 2010, 1004.1851.

[76]  J. Silk,et al.  AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies , 2013, 1301.3092.

[77]  John L. Tonry,et al.  A survey of galaxy redshifts: 4. The data. , 1983 .

[78]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[79]  Matthias Steinmetz,et al.  The cosmic web and the orientation of angular momenta , 2012, 1201.3365.

[80]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[81]  Intrinsic correlation of galaxy shapes: implications for weak lensing measurements , 2000, astro-ph/0005269.

[82]  Simon D. M. White,et al.  Angular momentum growth in protogalaxies , 1984 .

[83]  Sergei F. Shandarin,et al.  The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium , 1989 .

[84]  B. Weiner,et al.  THE EPOCH OF DISK SETTLING: z ∼ 1 TO NOW , 2012, 1207.7072.

[85]  Y. Rasera,et al.  The history of the baryon budget. Cosmic logistics in a hierarchical universe , 2006 .

[86]  Oliver Hahn,et al.  Properties of dark matter haloes in clusters, filaments, sheets and voids , 2006, astro-ph/0610280.

[87]  S. Colombi,et al.  The three dimensional skeleton: tracing the filamentary structure of the universe , 2007, 0707.3123.

[88]  J. M. van der Hulst,et al.  Spin Alignment of Dark Matter Halos in Filaments and Walls , 2006, astro-ph/0610249.

[89]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[90]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z ∼ 3 , 2010, 1009.0002.

[91]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[92]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[93]  B. M'enard,et al.  RADIATION PRESSURE FROM MASSIVE STAR CLUSTERS AS A LAUNCHING MECHANISM FOR SUPER-GALACTIC WINDS , 2010, 1005.4419.

[94]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[95]  R. Teyssier,et al.  On the onset of galactic winds in quiescent star forming galaxies , 2007, 0707.3376.

[96]  B. Schaefer,et al.  GALACTIC ANGULAR MOMENTA AND ANGULAR MOMENTUM CORRELATIONS IN THE COSMOLOGICAL LARGE-SCALE STRUCTURE , 2008, 0808.0203.

[97]  A. Sternberg,et al.  THE GROWTH OF DARK MATTER HALOS: EVIDENCE FOR SIGNIFICANT SMOOTH ACCRETION , 2010, 1005.4058.

[98]  C. Carollo,et al.  The evolution of dark matter halo properties in clusters, filaments, sheets and voids , 2007, 0704.2595.

[99]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[100]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .

[101]  Henry C. Ferguson,et al.  CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.

[102]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[103]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[104]  M. Krumholz,et al.  Slow Star Formation in Dense Gas: Evidence and Implications , 2006, astro-ph/0606277.