Conditions for Strong Ellipticity of Anisotropic Elastic Materials

In this paper, we derive necessary and sufficient conditions for the strong ellipticity condition of anisotropic elastic materials. We first observe that the strong ellipticity condition holds if and only if a second order tensor function is positive definite for any unit vectors. Then we further link this condition to the rank-one positive definiteness of three second-order tensors, three fourth-order tensors and a sixth-order tensor. In particular, we consider conditions of strong ellipticity of the rhombic classes, for which we need to check the copositivity of three second-order tensors and the positive definiteness of a sixth-order tensor. A direct method is presented to verify our conditions.

[1]  M. De Handbuch der Physik , 1957 .

[2]  M. Gurtin The Linear Theory of Elasticity , 1973 .

[3]  J. K. Knowles,et al.  On the ellipticity of the equations of nonlinear elastostatics for a special material , 1975 .

[4]  R. Abeyaratne Discontinuous deformation gradients in plane finite elastostatics of incompressible materials , 1980 .

[5]  R. G. Payton,et al.  Elastic Wave Propagation in Transversely Isotropic Media , 1983 .

[6]  H. Simpson,et al.  On copositive matrices and strong ellipticity for isotropic elastic materials , 1983 .

[7]  E. Sternberg,et al.  Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids , 1983 .

[8]  P. Rosakis Ellipticity and deformations with discontinuous gradients in finite elastostatics , 1990 .

[9]  Y. Wang,et al.  A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media , 1996 .

[10]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[11]  Bernard Dacorogna Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension , 2001 .

[12]  Cristina Padovani,et al.  Strong Ellipticity of Transversely Isotropic Elasticity Tensors , 2002 .

[13]  Ray W. Ogden,et al.  Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation , 2003 .

[14]  Jay R. Walton,et al.  Sufficient conditions for strong ellipticity for a class of anisotropic materials , 2003 .

[15]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[16]  Liqun Qi,et al.  Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..

[17]  Michele Ciarletta,et al.  Spatial Estimates for the Constrained Anisotropic Elastic Cylinder , 2006 .

[18]  L. Qi,et al.  The degree of the E-characteristic polynomial of an even order tensor , 2007 .

[19]  Alexandre Danescu,et al.  On the Strong Ellipticity of the Anisotropic Linearly Elastic Materials , 2007 .

[20]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[21]  Fei Wang,et al.  Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..