Optomechanical terahertz detection with single meta-atom resonator

Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light–matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.Achieving fast, sensitive and room temperature detection of terahertz waves remains a formidable scientific and technological challenge. Here, the authors propose a compact terahertz device combining concepts from metamaterial resonators, optomechanics and semiconductor nanotechnology.

[1]  M. Beck,et al.  Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial , 2011, Science.

[2]  Lev Davidovich Landau,et al.  Théorie de l"élasticité , 1990 .

[3]  Gamani Karunasiri,et al.  Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. , 2012, Optics letters.

[4]  James K. Gimzewski,et al.  A femtojoule calorimeter using micromechanical sensors , 1994 .

[5]  K Shibata,et al.  Photon-assisted tunneling through self-assembled InAs quantum dots in the terahertz frequency range. , 2012, Physical review letters.

[6]  Ivan Favero,et al.  Optical self cooling of a deformable Fabry-Perot cavity in the classical limit , 2008 .

[7]  Carsten Rockstuhl,et al.  Strong influence of packing density in terahertz metamaterials , 2010 .

[8]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[9]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[10]  V. Shalaev Optical negative-index metamaterials , 2007 .

[11]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[12]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[13]  Jun Yan,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.

[14]  Edmund H. Linfield,et al.  2.9THz quantum cascade lasers operating up to 70K in continuous wave , 2004 .

[15]  D. Mittleman Sensing with terahertz radiation , 2003 .

[16]  I. Al-Naib,et al.  Ultra-high Q even eigenmode resonance in terahertz metamaterials , 2015 .

[17]  S. Schmid,et al.  Optical detection of radio waves through a nanomechanical transducer , 2013, Nature.

[18]  C. Sirtori,et al.  Ultrastrong light-matter coupling regime with polariton dots. , 2010, Physical review letters.

[19]  A. Rogalski,et al.  Terahertz detectors and focal plane arrays , 2011 .

[20]  P. Jepsen,et al.  Radiation patterns from lens-coupled terahertz antennas. , 1995, Optics letters.

[21]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[22]  A. A. Anappara,et al.  Sub-cycle switch-on of ultrastrong light–matter interaction , 2009, Nature.

[23]  G. Strasser,et al.  Terahertz meta-atoms coupled to a quantum well intersubband transition. , 2011, Optics express.

[24]  Thomas Purdy,et al.  Bidirectional and efficient conversion between microwave and optical light , 2014 .

[25]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[26]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[27]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[28]  Hu Tao,et al.  Microwave and terahertz wave sensing with metamaterials. , 2011, Optics express.

[29]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[30]  Carlo Sirtori,et al.  Strong near field enhancement in THz nano-antenna arrays , 2013, Scientific Reports.

[31]  A. Lemaître,et al.  High frequency GaAs nano-optomechanical disk resonator. , 2010, Physical review letters.