Trends in industrial catalysis in the polyurethane industry

Catalysis has been an important field for polyurethane chemistry and many improvements have been accomplished in recent years. Some of the greatest challenges however still remain. There is not yet a satisfactory catalytic way for the direct oxidation of propene to propene oxide in spite of ruthless activities by all major players over decades. New methods of catalysts screening and improved tools for catalyst characterization may help to solve this problem in the near future. Catalyst development in the area of polyether synthesis has recently opened new routes to completely new products. New raw materials may become attractive and new polyether polyol structures will be accessible with new catalysts. The range of new polymers will open up new opportunities. In the field of isocyanates the optimization of all manufacturing steps (nitration, hydrogenation, phosgenation) is an ongoing process since commercial production started an incremental improvements are accomplished and implemented constantly. Major improvements for existing processes, including all their catalytic reaction steps, are not to be expected in the near future. Significant improvements seem only possible by alternative ways of isocyanate manufacturing. In this area, catalytic reactions and the modern tools of catalysts research will play a key-role. However, as for all new developments, they will have only a chance on realization on a commercial scale, if they are economically competitive to well established processes.

[1]  O. Bayer Das Di‐Isocyanat‐Polyadditionsverfahren (Polyurethane) , 1947 .

[2]  Livius Cotarca,et al.  BIS(TRICHLOROMETHYL) CARBONATE IN ORGANIC SYNTHESIS , 1996 .

[3]  P. Flory Principles of polymer chemistry , 1953 .

[4]  Hiroshi Sato,et al.  Vapor phase nitration of benzene over solid acid catalysts IV. Nitration with nitric acid (3); supported sulfuric acid catalyst with co-feeding of a trace amount of sulfuric acid , 1999 .

[5]  J. Sandall,et al.  The efficacy of ‘Claycop’ in the dinitration of toluene , 1997 .

[6]  P. Wehman,et al.  Reductive carbonylation of aromatic dinitro compounds with a palladium(phenanthroline)2(triflate)2 catalyst and an aromatic carboxylic acid as cocatalyst , 1996 .

[7]  Neal Douglass Jefferson Chemical Company , 1949 .

[8]  H. Alper,et al.  Synthesis of isocyanates from carbamate esters employing boron trichloride , 1998 .

[9]  C. Denko Treatment of osteoarthritis with Rumalon R. , 1978, Arthritis and rheumatism.

[10]  Yi Pan,et al.  Carbon Dioxide as a Phosgene Replacement: Synthesis and Mechanistic Studies of Urethanes from Amines, CO2, and Alkyl Chlorides , 1995 .

[11]  H. Mark,et al.  Encyclopedia of polymer science and engineering , 1985 .

[12]  High pressure nitration of toluene using nitrogen dioxide on zeolite catalysts , 1995 .

[13]  H. Alper,et al.  The ruthenium carbonyl catalyzed reduction of nitro compounds by phase transfer catalysis , 1980 .

[14]  T. Kitagawa,et al.  Improved Procedure for N-Formylation of Amines to Formamides Using Formic Acid, Oxalyl Chloride and Imidazole , 1994 .

[15]  E. Drent Opportunities in homogeneous catalysis , 1990 .

[16]  R. V. Chaudhari,et al.  Hydrogenation of 2,4-Dinitrotoluene Using a Supported Ni Catalyst: Reaction Kinetics and Semibatch Slurry Reactor Modeling , 1999 .

[17]  F. Ragaini,et al.  Catalytic Reductive Carbonylation of Organic Nitro Compounds , 1996 .

[18]  Wolfgang A. Herrmann,et al.  Applied Homogeneous Catalysis with Organometallic Compounds , 1996 .

[19]  G. Neri,et al.  Mechanism of 2,4-dinitrotoluene hydrogenation over Pd/C , 1995 .

[20]  K Sato,et al.  Development of a 500 kVA-class oxide-superconducting power transformer operated at liquid-nitrogen temperature , 1998 .

[21]  A. W. Murray,et al.  460. The rearrangement of isoquinoline alkaloid N-oxides , 1963 .

[22]  Hiroshi Sato,et al.  Vapor phase nitration of benzene over solid acid catalysts: II. Nitration with nitric acid (1); montmorillonite and mixed metal oxide catalysts , 1998 .

[23]  Yoshihisa Watanabe,et al.  Ruthenium complex-catalyzed synthesis of carbamates by dehydrogenative reaction of formamides with alcohols , 1993 .

[24]  Yoshimitsu Takeyasu,et al.  Internationalization of science and technology , 1989 .

[25]  J. Kuyper,et al.  Hexacyanometallate salts used as alkene-oxide polymerization catalysts and molecular sieves , 1987 .

[26]  H. Udupa,et al.  An electrochemical technique for the reduction of aromatic nitro compounds , 1982 .

[27]  Raghunath V. Chaudhari,et al.  A trickle-bed reactor model for hydrogenation of 2,4 dinitrotoluene: experimental verification , 1998 .

[28]  K. Kiso Pseudopotentials and symmetries of evolution equations , 1989 .

[29]  T. Aida,et al.  Living polymerization of epoxide catalyzed by the porphyrin-chlorodiethylaluminum system. Structure of the living end , 1981 .

[30]  A. Varma,et al.  Ethylene epoxidation in a catalytic packed-bed membrane reactor , 1998 .

[31]  T. Tsuruta,et al.  Studies on organometallic compounds as polymerization catalysts. III. Catalyst activity and structure of zinc alkoxide for propylene oxide polymerization , 1968 .

[32]  T. Urbański,et al.  Chemistry and technology of explosives , 1984 .

[33]  G. Wagner,et al.  Zur Übertragungsreaktion bei der anionichen Polymerisation von Oxiranen VI. Zum Einfluß von Kronenetherzusätzen auf die Polymerisation von Propylenoxid , 1984 .

[34]  H. Twitchett Chemistry of the production of organic isocyanates , 1974 .

[35]  M. Kantam,et al.  Reduction of nitroaromatics with a new heterogenised MCM-silylamine palladium (II) catalyst , 1998 .

[36]  P. Canton,et al.  Pd-Fe/SiO2 Catalysts in the Hydrogenation of 2,4-Dinitrotoluene , 1994 .

[37]  J. Woldendorp,et al.  Acid rain and eggshells , 1989, Nature.

[38]  K. Samwer,et al.  Electrical resistivity and superconductivity of amorphous La−Ag alloys , 1980 .

[39]  P. Jessop,et al.  HOMOGENEOUS CATALYSIS IN SUPERCRITICAL FLUIDS : HYDROGENATION OF SUPERCRITICAL CARBON DIOXIDE TO FORMIC ACID, ALKYL FORMATES, AND FORMAMIDES , 1996 .

[40]  Y. Yoshida,et al.  CARBONYLATION OF AMINES CATALYZED BY ORGANOZINC COMPOUND , 1984 .

[41]  H. Eckert,et al.  Triphosgen, ein kristalliner Phosgen‐Ersatz , 1987 .

[42]  W. Gladfelter,et al.  Activation of Nitroarenes in the Homogenous Catalytic Carbonylation of Nitroaromatics via an Oxygen-Atom-Transfer Mechanism Induced by Inner-Sphere Electron Transfer† , 1997 .

[43]  S. Asahi,et al.  Microbial Production of Uridine. Part IV. Opimization of Conditions for Production of Uridine by a Mutant of Bacillus subtilis. , 1994 .

[44]  N. Srinivasan,et al.  Iron-Ammonium Chloride - A Convenient and Inexpensive Reductant , 1992 .

[45]  J. G. Hoggett,et al.  Nitration and Aromatic Reactivity , 1971 .

[46]  M. Aresta,et al.  Selective carbomethoxylation of aromatic diamines. with mixed carbonic acid diesters in the presence of phosphorous acids , 1999 .

[47]  Raymond E. Kirk,et al.  Encyclopedia of chemical technology , 1998 .

[48]  D. Laycock Stereospecific polymerization of propylene oxide on thermally activated synthetic hydrotalcite , 1991 .

[49]  R. V. Chaudhari,et al.  Hydrogenation of 2,4-Dinitrotoluene Using a Pd/Al2O3 Catalyst in a Slurry Reactor: A Molecular Level Approach to Kinetic Modeling and Nonisothermal Effects , 1997 .

[50]  M. Reetz,et al.  Chemoselective Reduction of Halo-Nitro Aromatic Compounds by β-Cyclodextrin-Modified Transition Metal Catalysts in a Biphasic System , 1999 .

[51]  R. Prins,et al.  The effect of flexible lattice aluminium in zeolite beta during the nitration of toluene with nitric acid and acetic anhydride , 2000 .

[52]  H. Koinuma,et al.  Anionic polymerization of oxiranes and cyclic siloxanes initiated with potassium salt-crown ether systems , 1982 .

[53]  R. Prins,et al.  Vapour-phase nitration of benzene over modified mordenite catalysts , 1995 .

[54]  R. Prins,et al.  Vapour-Phase Nitration of Benzene over Zeolitic Catalysts , 1994 .

[55]  Fritz Ullmann,et al.  Ullmanns Encyklopädie der technischen Chemie , 1951 .

[56]  C. Price,et al.  Partial Head-to-Head Polymerization of Propylene Oxide by Stereospecific Catalysts , 1965 .

[57]  P. V. Leeuwen,et al.  On the mechanism of the nickel-catalysed regioselective cyclodimerization of isoprene , 1981 .

[58]  C. Booth,et al.  Use of crown ether in the anionic polymerization of propylene oxide—2. Molecular weight and molecular weight distribution , 1991 .

[59]  G. Neri,et al.  Kinetic Modeling of 2,4-Dinitrotoluene Hydrogenation over Pd/C , 1995 .

[60]  F. Bigi,et al.  Reaction of aromatic amines and ethyl acetoacetate promoted by zeolite HSZ-360. Phosgene-free synthesis of symmetric diphenylureas , 1998 .

[61]  J. Lessard,et al.  An efficient electrosynthesis of 2,4- and 2,6-diaminotoluenes , 1990 .

[62]  A.Ben Taleb,et al.  Synthesis of aminoarenes in homogeneously catalyzed nitroarene — methyl formate reactions , 1994 .

[63]  N. Spassky Stereoselective and Stereoelective Polymerization of Oxiranes and Thiiranes , 1977 .

[64]  T. Tsuruta,et al.  Infrared studies on organometallic compounds as polymerization catalysts. I. Diethylzinc‐alcohol system for epoxide polymerization , 1963 .

[65]  K. Frisch,et al.  Cyclotrimerization of isocyanates catalyzed by aminimides , 1979 .

[66]  E. J. Vandenberg Epoxide polymers: Synthesis, stereochemistry, structure, and mechanism , 1969 .

[67]  R. Livigni,et al.  Hexacyanometalate Salt Complexes as Catalysts for Epoxide Polymerizations , 1973 .

[68]  Hiroshi Sato,et al.  Vapor-phase nitration of benzene over solid acid catalysts (1): Nitration with nitric oxide (NO2) , 1998 .

[69]  Colin Booth,et al.  Anionic polymerisation of propylene oxide. Investigation of double-bond and head-to-head content by NMR spectroscopy , 1994 .

[70]  K. Frisch,et al.  Comparative Studies of Isocyanurate and Isocyanurate-Urethane Foams , 1975 .

[71]  R. Jansson Organic Electrosynthesis: New industrial uses for an old technology are spurred by advances in chemistry, engineering, and materials , 1984 .

[72]  E. J. Vandenberg Some mechanism aspects of epoxide polymerization. Stereochemical structure of the crystalline polymers from the 2,3-epoxybutanes , 1964 .

[73]  H. Knölker,et al.  A Novel Method for the Synthesis of Isocyanates Under Mild Conditions , 1995 .

[74]  J. Armor,et al.  Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene , 2000 .

[75]  W. Schnabel,et al.  DIE PALLADIUMCARBONYLCHLORIDE PD2(CO)2CL UND PD(CO)CL , 1970 .

[76]  P. Dyson,et al.  In situ infrared spectroelectrochemical studies of [Ru6C(CO)17][Ru6C(CO)16]2−: the redox induced conversion of carbonmonoxide to carbon dioxide , 1998 .

[77]  K. Westerterp,et al.  Kinetics of the catalytic hydrogenation of 2,4-dinitrotoluene. 1. Experiments, reaction scheme, and catalyst activity , 1990 .

[78]  E. Gallo,et al.  Investigation of the reactivity of palladium(0) complexes with nitroso compounds: relevance to the palladiumphenanthroline-catalysed carbonylation reactions of nitroarenes , 1999 .

[79]  P. Wehman,et al.  Influence of various P/N and P/P ligands on the palladium-catalysed reductive carbonylation of nitrobenzene , 1997 .

[80]  C. Hanson,et al.  Industrial and Laboratory Nitrations , 1976 .

[81]  X. Zuwei,et al.  Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. , 2001, Science.

[82]  Michele Aresta,et al.  Biomimetic building-up of the carbamic moiety: the intermediacy of carboxyphosphate analogues in the synthesis of N-aryl carbamate esters from arylamines and organic carbonates promoted by phosphorus acids , 1995 .

[83]  Keith Smith,et al.  A novel method for the nitration of simple aromatic compounds , 1998 .

[84]  M. Aresta,et al.  Carbon Dioxide: A Substitute for Phosgene , 1997 .

[85]  R. Prins,et al.  Selective nitration of toluene with acetyl nitrate and zeolites , 1999 .

[86]  W. Hölderich,et al.  Amination of benzene in the presence of ammonia using a Group VIII metal supported on a carrier as catalyst , 1998 .

[87]  W. Hölderich,et al.  Synthesis of Propylene Oxide from Propylene, Oxygen, and Hydrogen Catalyzed by Palladium–Platinum–Containing Titanium Silicalite , 1998 .

[88]  P. Rys,et al.  Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide/hydroxide catalyst. III. The selective reduction of nitro groups in aromatic azo compounds , 1999 .

[89]  K. Madeja,et al.  Cobaltchelate als Hydrierkatalysatoren. Zur Reduktion von Nitro‐ zu Aminoverbindungen mit Kohlenmonoxid und Wasser als Hydriermittel , 1981 .

[90]  T. Aida,et al.  Anionic Ring-Opening Polymerization , 1992 .

[91]  J. Reisch,et al.  Thermoplastic Polyurethane Elastomers Made from High Molecular Weight POLY-L® Polyols , 1992 .

[92]  K. Schwetlick,et al.  Zur Rhodium-katalysierten Carbonylierung aromatischer Nitroverbindungen zu Isocyanaten. III. Zur Sauerstoffübertragung bei der Carbonylierung von Nitromesitylen in Gegenwart von Rhodium(I)carbonylchlorid und Molybdänoxychlorid , 1985 .

[93]  J. Fréchet,et al.  Polybenzimidazole-supported heterogeneous palladium catalysts , 1985 .

[94]  H. Ulrich Chemistry and Technology of Isocyanates , 1997 .

[95]  Hiroshi Sato,et al.  Vapor phase nitration of benzene over solid acid catalysts: III. Nitration with nitric acid (2); mixed metal oxide treated with sulfuric acid and heteropolyacid partially neutralized , 1998 .

[96]  P. Plesch The chemistry of cationic polymerization , 1963 .

[97]  M. Lalithambika,et al.  An easy synthesis of 4,4′-di- aminodiphenylmethanes. on natural kaolinites , 1999 .

[98]  G. Olah,et al.  AROMATIC SUBSTITUTION. 43. PERFLUORINATED RESINSULFONIC ACID CATALYZED NITRATION OF AROMATICS , 1978 .

[99]  M. Kolb,et al.  Industrielle organische Chemie , 1993 .

[100]  T. Aida,et al.  Polymerization of epoxides catalysed by metalloporphine , 1981 .

[101]  K. Westerterp,et al.  Kinetics of the catalytic hydrogenation of 2,4-dinitrotoluene. 2. Modeling of the reaction rates and catalyst activity , 1990 .

[102]  K. Nomura Efficient selective reduction of aromatic nitro compounds by ruthenium catalysis under COH2O conditions , 1995 .

[103]  A. Dworak,et al.  Irregular sequence distribution statistics in poly(p-chlorophenyl glycidyl ethers) , 1980 .

[104]  K. Takata,et al.  Polymerization of propylene oxide catalyzed by fixed aluminum porphyrin , 1991 .

[105]  K. Nomura Transition metal catalyzed chemospecific reduction of aromatic nitro compounds, and hydrocarbonylation of chlorobenzenes under CO/H2O conditions , 1998 .

[106]  Hermann A. Maurer,et al.  String representations of graphs , 1978 .

[107]  R. Newman,et al.  Modified Catalytic Behaviour of Thermally Activated Synthetic Hydrotalcite in the Synthesis of Polyether Polyols , 1992 .

[108]  F. Ragaini,et al.  Mechanistic studies of palladium-catalysed carbonylation reactions of nitro compounds to isocyanates, carbamates and ureas , 1996 .

[109]  R. Holm,et al.  Surface analysis of Raney catalysts , 1985 .

[110]  T. Miyata,et al.  On the antisymmetry of the amino acid code table , 1980, Origins of life.

[111]  Y. Ono,et al.  Functionalizatiow of Benzene by its Reaction with Nitrogen Oxides Over Solid-Acid Catalysts , 1988 .

[112]  J. Sandall,et al.  Zeolite catalysis of aromatic nitrations with dinitrogen pentoxide , 1999 .

[113]  T. Aida,et al.  High-Speed "Immortal" Polymerization of Epoxides Initiated with Aluminum Porphyrin. Acceleration of Propagation and Chain-Transfer Reactions by a Lewis Acid , 1994 .

[114]  Bin Yang,et al.  Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions , 1997 .

[115]  E. Schmerling Height and thickness parameters for region F of the ionosphere , 1960 .

[116]  P. Laszlo,et al.  MILD AND SELECTIVE NITRATION BY CLAYCOP , 1995 .