Dissipative Scale Effects in Strain-Gradient Plasticity: The Case of Simple Shear

We analyze dissipative scale effects within a one-dimensional theory, developed in [L. Anand et al. (2005) J. Mech. Phys. Solids 53], which describes plastic flow in a thin strip undergoing simple shear. We give a variational characterization of the {\emph{ yield (shear) stress}} --- the threshold for the inset of plastic flow --- and we use this characterization, together with results from [M. Amar et al. (2011) J. Math. Anal. Appl. 397], to obtain an explicit relation between the yield stress and the height of the strip. The relation we obtain confirms that thinner specimens are stronger, in the sense that they display higher yield stress.

[1]  Lorenzo Bardella,et al.  A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations , 2006 .

[2]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[3]  Maria Chiricotto,et al.  Torsion in Strain-Gradient Plasticity: Energetic Scale Effects , 2012, SIAM J. Appl. Math..

[4]  Patrizio Neff,et al.  Existence and Uniqueness for Rate-Independent Infinitesimal Gradient Plasticity with Isotropic Hardening and Plastic Spin , 2010 .

[5]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[6]  Lallit Anand,et al.  A one-dimensional theory of strain-gradient plasticity : Formulation, analysis, numerical results , 2005 .

[7]  N.,et al.  A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY , 2002 .

[8]  P. Neff,et al.  Poincare meets Korn via Maxwell: Extending Korn's First Inequality to Incompatible Tensor Fields , 2012, 1203.2744.

[9]  Morton E. Gurtin,et al.  Alternative formulations of isotropic hardening for Mises materials, and associated variational inequalities , 2009 .

[10]  O. W. Dillon,et al.  A strain gradient theory of plasticity , 1970 .

[11]  Alessandro Giacomini,et al.  Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity , 2008 .

[12]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[13]  Alexander Mielke,et al.  Global Existence for Rate-Independent Gradient Plasticity at Finite Strain , 2009, J. Nonlinear Sci..

[14]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[15]  G. D. Maso,et al.  Quasistatic Evolution Problems for Linearly Elastic–Perfectly Plastic Materials , 2004, math/0412212.

[16]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[17]  Norman A. Fleck,et al.  A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier , 2009 .

[18]  Vikram Deshpande,et al.  Size effects in the bending of thin foils , 2009 .

[19]  Peter Gudmundson,et al.  A unified treatment of strain gradient plasticity , 2004 .

[20]  Patrizio Neff,et al.  Uniqueness of Strong Solutions in Infinitesimal Perfect Gradient-Plasticity with Plastic Spin , 2008 .

[21]  Y. Milman,et al.  Microindentations on W and Mo oriented single crystals: An STM study , 1993 .

[22]  Norman A. Fleck,et al.  Size effects in the torsion of thin metal wires , 2009 .

[23]  Morton E. Gurtin,et al.  A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin , 2004 .

[24]  Viggo Tvergaard,et al.  An alternative treatment of phenomenological higher-order strain-gradient plasticity theory , 2010 .

[25]  Castrenze Polizzotto,et al.  A thermodynamics-based formulation of gradient-dependent plasticity , 1998 .

[26]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[27]  Lorenzo Giacomelli,et al.  Mass-constrained minimization of a one-homogeneous functional arising in strain-gradient plasticity , 2013 .

[28]  Patrizio Neff,et al.  NOTES ON STRAIN GRADIENT PLASTICITY: FINITE STRAIN COVARIANT MODELLING AND GLOBAL EXISTENCE IN THE INFINITESIMAL RATE-INDEPENDENT CASE , 2009 .

[29]  Giovanni Leoni,et al.  Gradient theory for plasticity via homogenization of discrete dislocations , 2008, 0808.2361.

[30]  Castrenze Polizzotto,et al.  A link between the residual-based gradient plasticity theory and the analogous theories based on the virtual work principle , 2009 .

[31]  J. R. Willis,et al.  A mathematical basis for strain-gradient plasticity theory — Part I : Scalar plastic multiplier , 2008 .

[32]  J. Hutchinson Plasticity at the micron scale , 2000 .

[33]  Alessandro Giacomini,et al.  Quasi-static Evolution for a Model in Strain Gradient Plasticity , 2008, SIAM J. Math. Anal..

[34]  Patrizio Neff,et al.  Existence results in dislocation based rate-independent isotropic gradient plasticity with kinematical hardening and plastic spin: The case with symmetric local backstress , 2015, 1504.01973.

[35]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[36]  Lorenzo Bardella,et al.  Modelling the torsion of thin metal wires by distortion gradient plasticity , 2015 .

[37]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[38]  Huajian Gao,et al.  A conventional theory of mechanism-based strain gradient plasticity , 2004 .

[39]  Lorenzo Giacomelli,et al.  A nonlocal and fully nonlinear degenerate parabolic system from strain-gradient plasticity , 2010 .

[40]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[41]  J. Kratochvíl,et al.  Statistical foundation of continuum dislocation plasticity , 2008 .

[42]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[43]  Morton E. Gurtin,et al.  A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations , 2005 .

[44]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[45]  Norman A. Fleck,et al.  Strain gradient plasticity under non-proportional loading , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Anthony G. Evans,et al.  A critical assessment of theories of strain gradient plasticity , 2009 .

[47]  Andrew McBride,et al.  Well-posedness of a model of strain gradient plasticity for plastically irrotational materials , 2008 .

[48]  Christian Wieners,et al.  Numerical approximation of incremental infinitesimal gradient plasticity , 2009 .