Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3

We present a detailed analysis of the far-infrared (-IR) properties of the bright, lensed, z = 2.3, submillimetre-selected galaxy (SMG), SMM J2135-0102 (hereafter SMM J2135), using new observations with Herschel, SCUBA-2 and the Very Large Array (VLA). These data allow us to constrain the galaxy's spectral energy distribution (SED) and show that it has an intrinsic rest-frame 8-1000-μm luminosity, Lbol, of (2.3±0.2) × 1012 and a likely star-formation rate (SFR) of ~400 yr-1. The galaxy sits on the far-IR/radio correlation for far-IR-selected galaxies. At 70 μm, the SED can be described adequately by dust components with dust temperatures, Td ~ 30 and 60 k. Using SPIRE's Fourier- transform spectrometer (FTS) we report a detection of the [C ii] 158 μm cooling line. If the [C ii], CO and far-IR continuum arise in photo-dissociation regions (PDRs), we derive a characteristic gas density, n ~ 103 cm-3, and a far-ultraviolet (-UV) radiation field, G0, 103× stronger than the Milky Way. L[CII]/Lbol is significantly higher than in local ultra-luminous IR galaxies (ULIRGs) but similar to the values found in local star-forming galaxies and starburst nuclei. This is consistent with SMM J2135 being powered by starburst clumps distributed across ~2 kpc, evidence that SMGs are not simply scaled-up ULIRGs. Our results show that SPIRE's FTS has the ability to measure the redshifts of distant, obscured galaxies via the blind detection of atomic cooling lines, but it will not be competitive with ground-based CO-line searches. It will, however, allow detailed study of the integrated properties of high-redshift galaxies, as well as the chemistry of their interstellar medium (ISM), once more suitably bright candidates have been found.

[1]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[2]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[3]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[4]  A. Cimatti,et al.  The far-infrared/radio correlation as probed by Herschel , 2010, 1005.1072.

[5]  R. Ivison,et al.  Deep, ultra‐high‐resolution radio imaging of submillimetre galaxies using Very Long Baseline Interferometry , 2010, 1004.0009.

[6]  Harvard,et al.  Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.

[7]  C. Tucker,et al.  DETECTION OF THE 158 μm [C ii] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST , 2010, 1003.2174.

[8]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[9]  A. M. Swinbank,et al.  Gas, dust and stars in the SCUBA galaxy, SMM J02399−0136: the EVLA reveals a colossal galactic nursery , 2009, 0912.1591.

[10]  F. Walter,et al.  FIRST REDSHIFT DETERMINATION OF AN OPTICALLY/ULTRAVIOLET FAINT SUBMILLIMETER GALAXY USING CO EMISSION LINES , 2009, 0909.3177.

[11]  I. Smail,et al.  A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE , 2009 .

[12]  I. Smail,et al.  MID-INFRARED SPECTROSCOPY OF SUBMILLIMETER GALAXIES: EXTENDED STAR FORMATION IN MASSIVE HIGH-REDSHIFT GALAXIES , 2009, 0903.4017.

[13]  Eugene E. Haller,et al.  The large APEX bolometer camera LABOCA , 2008, Astronomical Telescopes + Instrumentation.

[14]  Jia-Sheng Huang,et al.  The Physical Scale of the Far-Infrared Emission in the Most Luminous Submillimeter Galaxies , 2008, 0807.2243.

[15]  University College London,et al.  Testing the evolutionary link between submillimetre galaxies and quasars: CO observations of QSOs at z∼ 2 , 2008, 0806.0618.

[16]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[17]  R. Ivison,et al.  High-resolution radio observations of submillimetre galaxies , 2007, 0712.3047.

[18]  A. M. Swinbank,et al.  A Detailed Study of Gas and Star Formation in a Highly Magnified Lyman Break Galaxy at z = 3.07 , 2007, 0705.1721.

[19]  J. Kneib,et al.  Faint Submillimeter Counts from Deep 850 Micron Observations of the Lensing Clusters A370, A851, and A2390 , 2002, astro-ph/0201426.

[20]  S. Chapman,et al.  Submillimetre sources in rich cluster fields: source counts, redshift estimates and cooling flow limits , 2000, astro-ph/0009067.

[21]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[22]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[23]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[24]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[25]  Rob Ivison,et al.  A hyperluminous galaxy at z = 2.8 found in a deep submillimetre survey , 1997, astro-ph/9712161.

[26]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[27]  A. Poglitsch,et al.  158 micron forbidden C II mapping of NGC 6946 - Probing the atomic medium , 1993 .

[28]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[29]  A. Tielens,et al.  Physical Conditions in Photodissociation Regions - Application to Galactic Nuclei , 1990 .

[30]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.