Computation of Galois groups over function fields

Symmetric function theory provides a basis for computing Galois groups which is largely independent of the coefficient ring. An exact algorithm has been implemented over Q(t 1 , t 2 ;...,t m ) in Maple for degree up to 8. A table of polynomials realizing each transitive permutation group of degree 8 as a Galois group over the rationals is included.

[1]  John McKay,et al.  Symmetric functions, m -sets, and Galois groups , 1994 .

[2]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[3]  John McKay,et al.  Actions of permutation groups on r-sets , 1985 .

[4]  H. Zassenhaus On Hensel factorization, I , 1969 .

[5]  Isaac Leroy Hines Symmetric functions , 2021, Tau Functions and their Applications.

[6]  The construction of SL(2, 3)-polynomials , 1984 .

[7]  Leonard H. Soicher The computation of Galois groups , 1981 .

[8]  Bruce W. Char,et al.  Maple V Library Reference Manual , 1992, Springer New York.

[9]  Jean-Pierre Azra,et al.  Écrits et mémoires mathématiques d'Évariste Galois , 1964 .

[10]  Gunter Malle,et al.  Polynomials for Primitive Nonsolvable Permutation Groups of Degree d ≤ 15 , 1987, J. Symb. Comput..

[11]  J. McKay,et al.  Polynomials with PSL(2, 7) as Galois group , 1979 .

[12]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[13]  B. H. Matzat Konstruktion von Zahl- und Funktionenkörpern mit vorgegebener Galoisgruppe. , 1984 .

[14]  W. Burnside,et al.  Theory of equations , 1886 .

[15]  H. Darmon,et al.  Computational verification of M11 and M12 as galois groups over Q , 1989 .

[16]  S. Lamacchia Polynomials with galois group psl(2,7) , 1980 .

[17]  R. Tennant Algebra , 1941, Nature.

[18]  E. O'Brien,et al.  The groups of order 256 , 1991 .

[19]  R. Stauduhar The Determination of Galois Groups , 1973 .

[20]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[21]  Leonard H. Soicher,et al.  Computing Galois groups over the rationals , 1985 .

[22]  John McKay,et al.  On Transitive Permutation Groups , 1998, LMS J. Comput. Math..

[23]  G. Butler,et al.  The transitive groups of degree up to eleven , 1983 .

[24]  Vijaya Kumar Murty,et al.  EFFECTIVE VERSIONS OF THE CHEBOTAREV DENSITY THEOREM FOR FUNCTION FIELDS , 1994 .

[25]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[26]  Sh. Strelitz On the Routh-Hurwitz Problem , 1977 .

[27]  Alexander Hulpke,et al.  Konstruktion transitiver Permutationsgruppen , 1996 .