Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties.

[1]  Oliver C. Grant,et al.  Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation , 2018, Journal of Virology.

[2]  R. Netz,et al.  Quantitative Prediction of Multivalent Ligand-Receptor Binding Affinities for Influenza, Cholera, and Anthrax Inhibition. , 2018, ACS nano.

[3]  O. Seitz,et al.  Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. , 2017, Journal of the American Chemical Society.

[4]  Ryan McBride,et al.  Three mutations switch H7N9 influenza to human-type receptor specificity , 2017, PLoS pathogens.

[5]  Ryan McBride,et al.  Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. , 2017, Cell host & microbe.

[6]  Trevor Bedford,et al.  Viral factors in influenza pandemic risk assessment , 2016, eLife.

[7]  D. Shaw,et al.  A Simple Model of Multivalent Adhesion and Its Application to Influenza Infection , 2016, Biophysical journal.

[8]  A. Ward,et al.  Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer , 2015, Biomolecules.

[9]  Y. Fulcher,et al.  Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12 , 2014, Nature Communications.

[10]  John P. Moore,et al.  Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies , 2014, Cell.

[11]  G. Air,et al.  Glycomic Characterization of Respiratory Tract Tissues of Ferrets , 2014, The Journal of Biological Chemistry.

[12]  David F. Smith,et al.  Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses , 2014, Proceedings of the National Academy of Sciences.

[13]  R. Fouchier,et al.  Role of receptor binding specificity in influenza A virus transmission and pathogenesis , 2014, The EMBO journal.

[14]  Moritz Waldmann,et al.  A nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian influenza. , 2014, Journal of the American Chemical Society.

[15]  I. Wilson,et al.  Preferential Recognition of Avian-Like Receptors in Human Influenza A H7N9 Viruses , 2013, Science.

[16]  I. Wilson,et al.  Hemagglutinin Receptor Specificity and Structural Analyses of Respiratory Droplet-Transmissible H5N1 Viruses , 2013, Journal of Virology.

[17]  Robert J Woods,et al.  Presentation, presentation, presentation! Molecular-level insight into linker effects on glycan array screening data , 2013, Glycobiology.

[18]  Wei Zhang,et al.  An Airborne Transmissible Avian Influenza H5 Hemagglutinin Seen at the Atomic Level , 2013, Science.

[19]  N. Heaton,et al.  In Vivo Bioluminescent Imaging of Influenza A Virus Infection and Characterization of Novel Cross-Protective Monoclonal Antibodies , 2013, Journal of Virology.

[20]  R. Pieters,et al.  Bridging lectin binding sites by multivalent carbohydrates. , 2013, Chemical Society reviews.

[21]  Yoshihiro Kawaoka,et al.  Receptor binding by a ferret-transmissible H5 avian influenza virus , 2013, Nature.

[22]  G. Air,et al.  Glycomic Analysis of Human Respiratory Tract Tissues and Correlation with Influenza Virus Infection , 2013, PLoS pathogens.

[23]  Jens C. Krause,et al.  A Carboxy-Terminal Trimerization Domain Stabilizes Conformational Epitopes on the Stalk Domain of Soluble Recombinant Hemagglutinin Substrates , 2012, PloS one.

[24]  Theo M Bestebroer,et al.  Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets , 2012, Science.

[25]  Ryan McBride,et al.  Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins. , 2012, Angewandte Chemie.

[26]  T. Kuiken,et al.  Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species , 2012, Veterinary Research.

[27]  Y. Kawaoka,et al.  The role of receptor binding specificity in interspecies transmission of influenza viruses. , 2012, Current opinion in virology.

[28]  P. Rottier,et al.  Only Two Residues Are Responsible for the Dramatic Difference in Receptor Binding between Swine and New Pandemic H1 Hemagglutinin* , 2010, The Journal of Biological Chemistry.

[29]  A. Dell,et al.  Glycan Analysis and Influenza A Virus Infection of Primary Swine Respiratory Epithelial Cells , 2010, The Journal of Biological Chemistry.

[30]  B. Bosch,et al.  The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. , 2010, Virology.

[31]  N. Dimmock,et al.  The receptor preference of influenza viruses , 2010, Influenza and other respiratory viruses.

[32]  Z. Shriver,et al.  Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions. , 2009, Chemistry & biology.

[33]  M Radermacher,et al.  DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. , 2009, Journal of structural biology.

[34]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[35]  Y. Guan,et al.  Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells , 2008, PloS one.

[36]  A. Srinivasan,et al.  Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses , 2008, Proceedings of the National Academy of Sciences.

[37]  Ron A M Fouchier,et al.  Immunopathology and Infectious Disease Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals , 2010 .

[38]  Giovanni Cardone,et al.  Influenza virus pleiomorphy characterized by cryoelectron tomography , 2006, Proceedings of the National Academy of Sciences.

[39]  Ian A. Wilson,et al.  Glycan microarray technologies: tools to survey host specificity of influenza viruses , 2006, Nature Reviews Microbiology.

[40]  Yoshihiro Kawaoka,et al.  Avian flu: Influenza virus receptors in the human airway , 2006, Nature.

[41]  James C Paulson,et al.  Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. , 2006, Journal of molecular biology.

[42]  Yoshihiro Kawaoka,et al.  Influenza: lessons from past pandemics, warnings from current incidents , 2005, Nature Reviews Microbiology.

[43]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[44]  Jia-Huai Wang,et al.  Structural basis for dimerization of ICAM-1 on the cell surface. , 2004, Molecular cell.

[45]  D. J. Stevens,et al.  The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin , 2004, Science.

[46]  Toshihiko Ogura,et al.  Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. , 2003, Journal of structural biology.

[47]  Andrzej T Galecki,et al.  Prevention of influenza pneumonitis by sialic Acid-conjugated dendritic polymers. , 2002, The Journal of infectious diseases.

[48]  N. Bovin,et al.  Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. , 2002, Antiviral research.

[49]  J Pulokas,et al.  Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. , 1999, Ultramicroscopy.

[50]  S. Teneberg,et al.  Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. , 1997, Virology.

[51]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[52]  P. S. Kim,et al.  A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. , 1993, Science.

[53]  G M Whitesides,et al.  Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. , 1989, Biochemistry.

[54]  R. Fouchier,et al.  Role of receptor binding specificity in influenza A virus transmission and pathogenesis , 2014 .

[55]  J. Skehel,et al.  Gamblin Hemagglutinin The Structure and Receptor Binding Properties of the 1918 Influenza , 2012 .

[56]  A. Srinivasan,et al.  Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin , 2008, Nature Biotechnology.

[57]  Hartmut Wedekind,et al.  Presentation , 2006, AMTA.