Inter-individual variability in the foraging behaviour of traplining bumblebees

[1]  A. Barron,et al.  Why Bees Are So Vulnerable to Environmental Stressors. , 2017, Trends in ecology & evolution.

[2]  W. Revelle psych: Procedures for Personality and Psychological Research , 2017 .

[3]  Eric Deleersnijder,et al.  A Lévy-flight diffusion model to predict transgenic pollen dispersal , 2017, Journal of The Royal Society Interface.

[4]  M.A. Becher,et al.  BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE , 2016, Ecological modelling.

[5]  M. Lihoreau,et al.  Evidence of trapline foraging in honeybees , 2016, Journal of Experimental Biology.

[6]  Lars Chittka,et al.  Life-Long Radar Tracking of Bumblebees , 2016, PloS one.

[7]  A. Toth,et al.  Variation in individual worker honey bee behavior shows hallmarks of personality , 2016, Behavioral Ecology and Sociobiology.

[8]  Robert G. Parton,et al.  AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation , 2016, PloS one.

[9]  Russell V. Lenth,et al.  Least-Squares Means: The R Package lsmeans , 2016 .

[10]  Marc Chadeau-Hyam,et al.  R2GUESS: A Graphics Processing Unit-Based R Package for Bayesian Variable Selection Regression of Multivariate Responses. , 2016, Journal of statistical software.

[11]  P. Armsworth,et al.  Determinism as a statistical metric for ecologically important recurrent behaviors with trapline foraging as a case study , 2015, Behavioral Ecology and Sociobiology.

[12]  M. Briffa,et al.  Parasites and personality in periwinkles (Littorina littorea): Infection status is associated with mean-level boldness but not repeatability , 2015, Behavioural Processes.

[13]  H. Mattila,et al.  Honey Bee Workers That Are Pollen Stressed as Larvae Become Poor Foragers and Waggle Dancers as Adults , 2015, PloS one.

[14]  J. Deneubourg,et al.  Group personality during collective decision-making: a multi-level approach , 2015, Proceedings of the Royal Society B: Biological Sciences.

[15]  C. Schmitz,et al.  High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves , 2015, Front. Behav. Neurosci..

[16]  A. Dornhaus,et al.  ‘Lazy’ in nature: ant colony time budgets show high ‘inactivity’ in the field as well as in the lab , 2015, Insectes Sociaux.

[17]  S. Bengston,et al.  The development of collective personality: the ontogenetic drivers of behavioral variation across groups , 2014, Front. Ecol. Evol..

[18]  Vikyath D Rao,et al.  Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels , 2014, Animal Behaviour.

[19]  N. E. Raine,et al.  A comparison of visual and olfactory learning performance in the bumblebee Bombus terrestris , 2014, Behavioral Ecology and Sociobiology.

[20]  Raphaël Jeanson,et al.  Interindividual variability in social insects – proximate causes and ultimate consequences , 2014, Biological reviews of the Cambridge Philosophical Society.

[21]  W. Schuett,et al.  Studying personality variation in invertebrates: why bother? , 2014, Animal Behaviour.

[22]  Jair E. Garcia,et al.  Bee reverse-learning behavior and intra-colony differences: Simulations based on behavioral experiments reveal benefits of diversity , 2014 .

[23]  Andreas P. Modlmeier,et al.  The keystone individual concept: an ecological and evolutionary overview , 2014, Animal Behaviour.

[24]  A. Dornhaus,et al.  Behavioural syndromes and social insects: personality at multiple levels , 2014, Biological reviews of the Cambridge Philosophical Society.

[25]  Lars Chittka,et al.  A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements , 2013, PLoS Comput. Biol..

[26]  A. Reynolds,et al.  Unravelling the mechanisms of trapline foraging in bees , 2013, Communicative & integrative biology.

[27]  J. Thomson,et al.  Trapline foraging by bumble bees: VI. Behavioral alterations under speed-accuracy trade-offs , 2013 .

[28]  Alison M Bell,et al.  An evolutionary ecology of individual differences. , 2012, Ecology letters.

[29]  A. Reynolds,et al.  Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales , 2012, PLoS biology.

[30]  Robert E. Page,et al.  Complex pleiotropy characterizes the pollen hoarding syndrome in honey bees (Apis mellifera L.) , 2012, Behavioral Ecology and Sociobiology.

[31]  N. Pinter-Wollman Personality in social insects: How does worker personality determine colony personality? , 2012 .

[32]  Zhengzheng S Liang,et al.  Molecular Determinants of Scouting Behavior in Honey Bees , 2012, Science.

[33]  M. Briffa,et al.  Is boldness a resource-holding potential trait? Fighting prowess and changes in startle response in the sea anemone, Actinia equina , 2012, Proceedings of the Royal Society B: Biological Sciences.

[34]  Lars Chittka,et al.  Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees , 2011, Functional ecology.

[35]  Susanne Foitzik,et al.  Productivity increases with variation in aggression among group members in Temnothorax ants , 2011 .

[36]  Lars Chittka,et al.  Bees do not use nearest-neighbour rules for optimization of multi-location routes , 2011, Biology Letters.

[37]  T. Seeley,et al.  Consistent personality differences in house-hunting behavior but not decision speed in swarms of honey bees (Apis mellifera) , 2011, Behavioral Ecology and Sociobiology.

[38]  L. Chittka,et al.  Do inexperienced bumblebee foragers use scent marks as social information? , 2011, Animal Cognition.

[39]  T. Seeley,et al.  Collective personalities in honeybee colonies are linked to colony fitness , 2011, Animal Behaviour.

[40]  Susan E. Riechert,et al.  How within-group behavioural variation and task efficiency enhance fitness in a social group , 2011, Proceedings of the Royal Society B: Biological Sciences.

[41]  Shinichi Nakagawa,et al.  Repeatability for Gaussian and non‐Gaussian data: a practical guide for biologists , 2010, Biological reviews of the Cambridge Philosophical Society.

[42]  L. Chittka,et al.  Travel Optimization by Foraging Bumblebees through Readjustments of Traplines after Discovery of New Feeding Locations , 2010, The American Naturalist.

[43]  Dave Goulson,et al.  Silent Summer: Bumblebees , 2010 .

[44]  A. Dornhaus,et al.  Location, location, location: larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens) , 2009, Proceedings of the Royal Society B: Biological Sciences.

[45]  J. Thomson,et al.  Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. , 2009, Annals of botany.

[46]  E. Wilson,et al.  The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies , 2008 .

[47]  J. G. Burns,et al.  Diversity of speed-accuracy strategies benefits social insects , 2008, Current Biology.

[48]  Lars Chittka,et al.  Animal Personalities: The Advantage of Diversity , 2008, Current Biology.

[49]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[50]  Lars Chittka,et al.  The correlation of learning speed and natural foraging success in bumble-bees , 2008, Proceedings of the Royal Society B: Biological Sciences.

[51]  Gwenaël Kaminski,et al.  Individual Experience Alone Can Generate Lasting Division of Labor in Ants , 2007, Current Biology.

[52]  James D. Thomson,et al.  Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition , 2007 .

[53]  A. Bell Future directions in behavioural syndromes research , 2007, Proceedings of the Royal Society B: Biological Sciences.

[54]  Lars Chittka,et al.  Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging , 2007, Oecologia.

[55]  D. Nettle The evolution of personality variation in humans and other animals. , 2006, The American psychologist.

[56]  T. C. Ings,et al.  Unterschiede im Lernverhalten zwischen Kolonien einer freilebenden Britischen Hummelpopulation (Hymenoptera: Apidae: Bombus terrestris audax) , 2006 .

[57]  Daniel R. Papaj,et al.  Learning in two contexts: the effects of interference and body size in bumblebees , 2005, Journal of Experimental Biology.

[58]  J. Thomson,et al.  Efficient harvesting of renewing resources , 2005 .

[59]  Wim Dewulf,et al.  A multi-level approach , 2005 .

[60]  S. Graham,et al.  Honey Bee Nest Thermoregulation: Diversity Promotes Stability , 2004, Science.

[61]  Andrew Sih,et al.  Behavioral syndromes: an ecological and evolutionary overview. , 2004, Trends in ecology & evolution.

[62]  L. Chittka,et al.  Interindividual variation of eye optics and single object resolution in bumblebees , 2003, Journal of Experimental Biology.

[63]  A. Dornhaus,et al.  Psychophysics: Bees trade off foraging speed for accuracy , 2003, Nature.

[64]  J. Tautz,et al.  Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Dave Goulson,et al.  Bumblebees: Behaviour, Ecology, and Conservation , 2003 .

[66]  J C Stout,et al.  Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency? , 2002, Animal Behaviour.

[67]  A. Weidenmüller,et al.  Size variation and foraging rate in bumblebees (Bombus terrestris) , 2002, Insectes Sociaux.

[68]  M. Breed,et al.  Juvenile hormone and aggression in honey bees. , 2001, Journal of insect physiology.

[69]  S. Gosling From mice to men: what can we learn about personality from animal research? , 2001, Psychological bulletin.

[70]  C. Michener The Bees of the World , 2000 .

[71]  His-Te Shih,et al.  ETHOM: Event-Recording Computer Software for the Study of Animal Behavior , 2000 .

[72]  Douglas M. Bates,et al.  LINEAR AND NONLINEAR MIXED-EFFECTS MODELS , 1998 .

[73]  James D. Thomson,et al.  Trapline foraging by bumble bees: II. Definition and detection from sequence data , 1997 .

[74]  Henry F. Kaiser,et al.  Coefficient Alpha for a Principal Component and the Kaiser-Guttman Rule , 1991 .

[75]  E. Wilson The Insect Societies , 1974 .