Error estimates on the random projection methods for hyperbolic conservation laws with stiff reaction terms

In this paper we give error estimates on the random projection methods, recently introduced by the authors, for numerical simulations of the hyperbolic conservation laws with stiff reaction terms: ut + f(u)x = -1/e(u - α)(u2 - 1), -1 0 for large |u|.

[1]  Haitao Fan,et al.  Zero Reaction Limit for Hyperbolic Conservation Laws with Source Terms , 2000 .

[2]  Weizhu Bao,et al.  The random projection method for a model problem of combustion with stiff chemical reactions , 2002, Appl. Math. Comput..

[3]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[4]  Weizhu Bao,et al.  The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms , 2000 .

[5]  Andrew J. Majda,et al.  Qualitative model for dynamic combustion , 1981 .

[6]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable one-dimensional detonations , 1991 .

[7]  Alexandre J. Chorin,et al.  Random choice methods with applications to reacting gas flow , 1977 .

[8]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..

[9]  P. Prescott,et al.  Monte Carlo Methods , 1964, Computational Statistical Physics.

[10]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[11]  Alexandre J. Chorin,et al.  Random choice solution of hyperbolic systems , 1976 .

[12]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[13]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[14]  P. Colella,et al.  Theoretical and numerical structure for reacting shock waves , 1986 .

[15]  Shi Jin,et al.  The Random Projection Method for Stiff Detonation Capturing , 2001, SIAM J. Sci. Comput..

[16]  T. Elperin,et al.  About the choice of uniformly distributed sequences to be used in the random choice method , 1986 .

[17]  Weizhu Bao,et al.  The Random Projection Method for Stiff Detonation Waves , 2002 .

[18]  Björn Sjögreen,et al.  Numerical approximation of hyperbolic conservation laws with stiff terms , 1991 .

[19]  Matania Ben-Artzi,et al.  The generalized Riemann problem for reactive flows , 1989 .

[20]  Weizhu Bao,et al.  The Random Projection Method for Stiff Multispecies Detonation Capturing , 2002 .

[21]  Phillip Colella,et al.  Glimm's Method for Gas Dynamics , 1982 .

[22]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .