Adaptive Torque Control of Variable Speed Wind Turbines

The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

[1]  M. Maureen Hand,et al.  Mitigation of Wind Turbine/Vortex Interaction Using Disturbance Accommodating Control , 2003 .

[2]  Mark J. Balas,et al.  Systematic Controller Design Methodology for Variable-Speed Wind Turbines , 2000 .

[3]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[4]  Mark J. Balas,et al.  PERIODIC DISTURBANCE ACCOMMODATING CONTROL FOR SPEED REGULATION OF WIND TURBINES , 2002 .

[5]  T. McCoy,et al.  Applicability of Nacelle Anemometer Measurements for Use in Turbine Power Performance Tests: Preprint , 2002 .

[6]  Kathryn E. Johnson,et al.  Baseline Results and Future Plans for the NREL Controls Advanced Research Turbine: Preprint , 2003 .

[7]  W. Leithead,et al.  Implementation of wind turbine controllers , 1997 .

[8]  Kathryn E. Johnson,et al.  METHODS FOR INCREASING REGION 2 POWER CAPTURE ON A VARIABLE SPEED HAWT , 2004 .

[9]  Scott Schreck,et al.  Wind Tunnel Testing of NREL's Unsteady Aerodynamics Experiment , 2001 .

[10]  Christian Masson,et al.  Numerical Investigations of Nacelle Anemometry for Horizontal Axis Wind Turbines , 2003 .

[11]  Y. D. Song,et al.  Variable speed control of wind turbines using nonlinear and adaptive algorithms , 2000 .

[12]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[13]  L.Y. Pao,et al.  Stability analysis of an adaptive torque controller for variable speed wind turbines , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[14]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[15]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[16]  A. D. Wright,et al.  Modern Control Design for Flexible Wind Turbines , 2004 .

[17]  J.H.R. Enslin,et al.  Performance optimization for doubly-fed wind power generation systems , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[18]  Alan Wright,et al.  FAST{_}AD Code Verification: A Comparison to ADAMS , 2001 .

[19]  Karl Stol,et al.  VALIDATION OF A SYMBOLIC WIND TURBINE STRUCTURAL DYNAMICS MODEL , 2000 .

[20]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[21]  J. D. van Wyk,et al.  A study of a wind power converter with micro-computer based maximal power control utilising an over-synchronous electronic scherbius cascade , 1992 .

[22]  J. Freeman,et al.  An investigation of variable speed horizontal-axis wind turbines using direct model-reference adaptive control , 1999 .

[23]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[24]  A. J. Eggers,et al.  Influence of Transition Modes and Gravity Loads on Rotor Fatigue and Power Control , 2002 .

[25]  P. W. Carlin,et al.  Results from the NREL Variable-Speed Test bed , 1998 .

[26]  H. Ashley,et al.  EFFECTS OF COUPLED ROTOR-TOWER MOTIONS ON AERODYNAMIC CONTROL OF FLUCTUATING LOADS ON LIGHT-WEIGHT HAWTS , 1998 .