On moments of classical orthogonal polynomials
暂无分享,去创建一个
[1] W. Hahn. Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .
[2] A. Verma,et al. Certain expansions of the basic hypergeometric functions , 1966 .
[3] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[4] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[5] D. H. Griffel,et al. An Introduction to Orthogonal Polynomials , 1979 .
[6] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[7] J. Letessier,et al. Dual birth and death processes and orthogonal polynomials , 1986 .
[8] Wolfram Koepf,et al. Power Series in Computer Algebra , 1992, J. Symb. Comput..
[9] Antonio J. Durán,et al. Functions with Given Moments and Weight Functions for Orthogonal Polynomials , 1993 .
[10] A. W. Kemp,et al. Univariate Discrete Distributions , 1993 .
[11] A. W. Kemp,et al. Univariate Discrete Distributions , 1993 .
[12] Mizan Rahman,et al. On classical orthogonal polynomials , 1995 .
[13] Dennis E. White,et al. The Combinatorics of q-Charlier Polynomials , 1993, J. Comb. Theory A.
[14] Rene F. Swarttouw,et al. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.
[15] Polinomios ortogonales Q-semiclásicos , 1996 .
[16] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[17] Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen , 1996 .
[18] I. Area,et al. LETTER TO THE EDITOR: Results for some inversion problems for classical continuous and discrete orthogonal polynomials , 1997 .
[19] Wolfram Koepf,et al. Representations of orthogonal polynomials , 1997 .
[20] Jesús S. Dehesa,et al. Expansions in series of orthogonal hypergeometric polynomials , 1998 .
[21] Polinomios ortogonales de variable discreta: pares coherentes. Problemas de conexión , 1999 .
[22] Iván Area,et al. Inversion Problems in the q-Hahn Tableau , 1999, J. Symb. Comput..
[23] W. Schoutens. Stochastic processes and orthogonal polynomials , 2000 .
[24] I. Areaa,et al. Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas , 2001 .
[25] Wolfram Koepf,et al. On a structure formula for classical q -orthogonal polynomials , 2001 .
[26] Wolfram Koepf,et al. Recurrence equations and their classical orthogonal polynomial solutions , 2002, Appl. Math. Comput..
[27] M. Masjed‐Jamei. Three Finite Classes of Hypergeometric Orthogonal Polynomials and Their Application in Functions Approximation , 2002 .
[28] Mourad E. H. Ismail,et al. Applications of q-Taylor theorems , 2003 .
[29] Dennis Stanton,et al. q-Taylor theorems, polynomial expansions, and interpolation of entire functions , 2003, J. Approx. Theory.
[30] J. S. Christiansen. Indeterminate Moment Problems within the Askey-scheme , 2004 .
[31] Mohammad Masjed Jamei. Classical orthogonal polynomials with weight function ((ax + b)2 + (cx + d)2)−p exp(q Arctg((ax + b)/(cx + d))), x ∈ (−∞, ∞) and a generalization of T and F distributions , 2004 .
[32] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[33] M. Ismail,et al. Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .
[34] M. Foupouagnigni,et al. On difference equations for orthogonal polynomials on nonuniform lattices1 , 2008 .
[35] Mahmoud H. Annaby,et al. q-Taylor and interpolation series for Jackson q-difference operators , 2008 .
[36] Wolfram Koepf,et al. Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen , 2009 .
[37] Rene F. Swarttouw,et al. Hypergeometric Orthogonal Polynomials , 2010 .
[38] Sylvie Corteel,et al. Formulae for Askey-Wilson moments and enumeration of staircase tableaux , 2010, 1007.5174.
[39] Wolfram Koepf,et al. Representations of q-orthogonal polynomials , 2012, J. Symb. Comput..
[40] Wolfram Koepf,et al. Connection and linearization coefficients of the Askey-Wilson polynomials , 2013, J. Symb. Comput..
[41] On Discrete $q$-Extensions of Chebyshev Polynomials , 2013 .
[42] Jiang Zeng,et al. Separation of variables and combinatorics of linearization coefficients of orthogonal polynomials , 2011, J. Comb. Theory, Ser. A.
[43] D. D. Tcheutia. On Connection, Linearization and Duplication Coefficients of Classical Orthogonal Polynomials , 2014 .
[44] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.