On moments of classical orthogonal polynomials

[1]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[2]  A. Verma,et al.  Certain expansions of the basic hypergeometric functions , 1966 .

[3]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[4]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[5]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[6]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[7]  J. Letessier,et al.  Dual birth and death processes and orthogonal polynomials , 1986 .

[8]  Wolfram Koepf,et al.  Power Series in Computer Algebra , 1992, J. Symb. Comput..

[9]  Antonio J. Durán,et al.  Functions with Given Moments and Weight Functions for Orthogonal Polynomials , 1993 .

[10]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[11]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[12]  Mizan Rahman,et al.  On classical orthogonal polynomials , 1995 .

[13]  Dennis E. White,et al.  The Combinatorics of q-Charlier Polynomials , 1993, J. Comb. Theory A.

[14]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[15]  Polinomios ortogonales Q-semiclásicos , 1996 .

[16]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[17]  Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen , 1996 .

[18]  I. Area,et al.  LETTER TO THE EDITOR: Results for some inversion problems for classical continuous and discrete orthogonal polynomials , 1997 .

[19]  Wolfram Koepf,et al.  Representations of orthogonal polynomials , 1997 .

[20]  Jesús S. Dehesa,et al.  Expansions in series of orthogonal hypergeometric polynomials , 1998 .

[21]  Polinomios ortogonales de variable discreta: pares coherentes. Problemas de conexión , 1999 .

[22]  Iván Area,et al.  Inversion Problems in the q-Hahn Tableau , 1999, J. Symb. Comput..

[23]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[24]  I. Areaa,et al.  Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas , 2001 .

[25]  Wolfram Koepf,et al.  On a structure formula for classical q -orthogonal polynomials , 2001 .

[26]  Wolfram Koepf,et al.  Recurrence equations and their classical orthogonal polynomial solutions , 2002, Appl. Math. Comput..

[27]  M. Masjed‐Jamei Three Finite Classes of Hypergeometric Orthogonal Polynomials and Their Application in Functions Approximation , 2002 .

[28]  Mourad E. H. Ismail,et al.  Applications of q-Taylor theorems , 2003 .

[29]  Dennis Stanton,et al.  q-Taylor theorems, polynomial expansions, and interpolation of entire functions , 2003, J. Approx. Theory.

[30]  J. S. Christiansen Indeterminate Moment Problems within the Askey-scheme , 2004 .

[31]  Mohammad Masjed Jamei Classical orthogonal polynomials with weight function ((ax + b)2 + (cx + d)2)−p exp(q Arctg((ax + b)/(cx + d))), x ∈ (−∞, ∞) and a generalization of T and F distributions , 2004 .

[32]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[33]  M. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .

[34]  M. Foupouagnigni,et al.  On difference equations for orthogonal polynomials on nonuniform lattices1 , 2008 .

[35]  Mahmoud H. Annaby,et al.  q-Taylor and interpolation series for Jackson q-difference operators , 2008 .

[36]  Wolfram Koepf,et al.  Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen , 2009 .

[37]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[38]  Sylvie Corteel,et al.  Formulae for Askey-Wilson moments and enumeration of staircase tableaux , 2010, 1007.5174.

[39]  Wolfram Koepf,et al.  Representations of q-orthogonal polynomials , 2012, J. Symb. Comput..

[40]  Wolfram Koepf,et al.  Connection and linearization coefficients of the Askey-Wilson polynomials , 2013, J. Symb. Comput..

[41]  On Discrete $q$-Extensions of Chebyshev Polynomials , 2013 .

[42]  Jiang Zeng,et al.  Separation of variables and combinatorics of linearization coefficients of orthogonal polynomials , 2011, J. Comb. Theory, Ser. A.

[43]  D. D. Tcheutia On Connection, Linearization and Duplication Coefficients of Classical Orthogonal Polynomials , 2014 .

[44]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.