Computational Geometric Optimal Control of Rigid Bodies

This paper formulates optimal control problems for rigid bodies in a geometric manner and it presents computational procedures based on this geometric formulation for numerically solving these optimal control problems. The dynamics of each rigid body is viewed as evolving on a configuration manifold that is a Lie group. Discrete-time dynamics of each rigid body are developed that evolve on the configuration manifold according to a discrete version of Hamilton's principle so that the computations preserve geometric features of the dynamics and guarantee evolution on the configuration manifold; these discrete-time dynamics are referred to as Lie group variational integrators. Rigid body optimal control problems are formulated as discrete-time optimization problems for discrete Lagrangian/Hamiltonian dynamics, to which standard numerical optimization algorithms can be applied. This general approach is illustrated by presenting results for several different optimal control problems for a single rigid body and for multiple interacting rigid bodies. The computational advantages of the approach, that arise from correctly modeling the geometry, are discussed.

[1]  Jerrold E. Marsden,et al.  Lagrangian Reduction by Stages , 2001 .

[2]  J. Marsden,et al.  Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.

[3]  Richard Montgomery,et al.  Gauge theory of the falling cat , 1993 .

[4]  Li-Sheng Wang Geometry, Dynamics and Control of Coupled Systems , 1990 .

[5]  Daniel J. Scheeres Stability in the Full Two-Body Problem , 2002 .

[6]  I.I. Hussein,et al.  A Discrete Variational Integrator for Optimal Control Problems on SO(3) , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[7]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[8]  Paul Althaus Smith,et al.  Pure and applied mathematics; : a series of monographs and textbooks. , 2003 .

[9]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[10]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[11]  Hans Seywald,et al.  Singular control in minimum time spacecraft reorientation , 1991 .

[12]  N. McClamroch,et al.  A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[13]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[14]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[15]  Jerrold E. Marsden,et al.  The symmetric representation of the rigid body equations and their discretization , 2002 .

[16]  D. Bernstein,et al.  Dynamics and control of a 3D pendulum , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[17]  Taeyoung Lee Computational geometric mechanics and control of rigid bodies , 2008 .

[18]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[19]  Peter E. Crouch,et al.  Optimal control and geodesic flows , 1996 .

[20]  Velimir Jurdjevic,et al.  Optimal Control Problems on Lie groups , 1991 .

[21]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[22]  N. McClamroch,et al.  Lie group variational integrators for the full body problem in orbital mechanics , 2007 .

[23]  M. Leok,et al.  Controlled Lagrangians and Stabilization of the Discrete Cart-Pendulum System , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[24]  Anthony M. Bloch,et al.  Geometric structure-preserving optimal control of a rigid body , 2007, 0712.4400.

[25]  V. Jurdjevic Optimal control, geometry, and mechanics , 1998 .

[26]  Michael J. Enos,et al.  Dynamics and control of mechanical systems : the falling cat and related problems , 1993 .

[27]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[28]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[29]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[30]  Jerrold E. Marsden,et al.  Foundations of computational geometric mechanics , 2004 .

[31]  Taeyoung Lee,et al.  Optimal Control of a Rigid Body using Geometrically Exact Computations on SE(3) , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[32]  Taeyoung Lee,et al.  A combinatorial optimal control problem for spacecraft formation reconfiguration , 2007, 2007 46th IEEE Conference on Decision and Control.

[33]  R. C. Thompson,et al.  Survey of time-optimal attitude maneuvers , 1994 .

[34]  N. McClamroch,et al.  Lie group variational integrators for the full body problem , 2005, math/0508365.

[35]  J. Marsden,et al.  Discrete mechanics and optimal control , 2005 .

[36]  Taeyoung Lee,et al.  Attitude maneuvers of a rigid spacecraft in a circular orbit , 2006, 2006 American Control Conference.

[37]  Srinivas R. Vadali,et al.  Quasi-Closed-Form Solution to the Time-Optimal Rigid Spacecraft Reorientation Problem , 1993 .

[38]  J. Baillieul Geometric methods for nonlinear optimal control problems , 1978 .

[39]  Jerrold E. Marsden,et al.  Discrete rigid body dynamics and optimal control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[40]  N. McClamroch,et al.  Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3) , 2006, math/0601424.

[41]  B. Wie,et al.  Time-optimal three-axis reorientation of a rigid spacecraft , 1993 .

[42]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[43]  Daniel J. Scheeres,et al.  Stability in the Full Two-Body Problem , 2002 .

[44]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[45]  Taeyoung Lee,et al.  Optimal Attitude Control for a Rigid Body with Symmetry , 2007, 2007 American Control Conference.

[46]  Taeyoung Lee,et al.  Time optimal attitude control for a rigid body , 2007, 2008 American Control Conference.