Discovery of a Long-duration Superflare on a Young Solar-type Star EK Draconis with Nearly Similar Time Evolution for Hα and White-light Emissions
暂无分享,去创建一个
J. Takahashi | H. Maehara | K. Shibata | Tomoki Saito | D. Nogami | T. Ohshima | Y. Notsu | S. Honda | K. Murata | K. Shiraishi | Noriyuki Katoh | K. Isogai | K. Namekata | Soshi Okamoto | M. Takayama | F. Ogawa | M. Niwano | R. Adachi | M. Oeda | Miyako Tozuka
[1] J. Takahashi,et al. Probable detection of an eruptive filament from a superflare on a solar-type star , 2021, Nature Astronomy.
[2] M. Temmer. Space weather: the solar perspective , 2021, Living Reviews in Solar Physics.
[3] S. Solanki,et al. Observing and modelling the young solar analogue EK Draconis: starspot distribution, elemental abundances, and evolutionary status , 2021, 2101.07248.
[4] H. Maehara,et al. Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data , 2014, The Astrophysical Journal.
[5] K. Takagi,et al. Time-resolved spectroscopy and photometry of M dwarf flare star YZ Canis Minoris with OISTER and TESS: Blue asymmetry in the Hα line during the non-white light flare , 2020, 2009.14412.
[6] Masatsugu Iribe,et al. The Seimei telescope project and technical developments , 2020, Publications of the Astronomical Society of Japan.
[7] J. Allred,et al. Optical and X-ray observations of stellar flares on an active M dwarf AD Leonis with the Seimei Telescope, SCAT, NICER, and OISTER , 2020, 2005.04336.
[8] J. Davenport,et al. Temporal Evolution of Spatially Resolved Individual Star Spots on a Planet-hosting Solar-type Star: Kepler-17 , 2020, The Astrophysical Journal.
[9] M. Aschwanden. Self-organized Criticality in Solar and Stellar Flares: Are Extreme Events Scale-free? , 2019, The Astrophysical Journal.
[10] F. Pepe,et al. Temporal evolution and correlations of optical activity indicators measured in Sun-as-a-star observations , 2019, Astronomy & Astrophysics.
[11] T. Hattori,et al. KOOLS–IFU: Kyoto Okayama Optical Low-dispersion Spectrograph with optical-fiber Integral Field Unit , 2019, Publications of the Astronomical Society of Japan.
[12] B. Nizamov. Soft X-ray heating as a mechanism of optical continuum generation in solar-type star superflares , 2019, Monthly Notices of the Royal Astronomical Society.
[13] J. Davenport,et al. Do Kepler Superflare Stars Really Include Slowly Rotating Sun-like Stars?—Results Using APO 3.5 m Telescope Spectroscopic Observations and Gaia-DR2 Data , 2019, The Astrophysical Journal.
[14] S. Sciortino,et al. Simultaneous Kepler/K2 and XMM‐Newton observations of superflares in the Pleiades , 2019, Astronomische Nachrichten.
[15] S. Toriumi,et al. Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots , 2018, The Astrophysical Journal.
[16] et al,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[17] T. Carroll,et al. Mapping EK Draconis with PEPSI , 2018, Astronomy & Astrophysics.
[18] P. Heinzel,et al. Can Flare Loops Contribute to the White-light Emission of Stellar Superflares? , 2018, The Astrophysical Journal.
[19] X. Cheng,et al. A circular white-light flare with impulsive and gradual white-light kernels , 2017, Nature Communications.
[20] D. Knipp,et al. Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents , 2017, 1711.00690.
[21] H. Maehara,et al. Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars , 2017, 1710.11325.
[22] M. Aschwanden,et al. Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections , 2017, 1701.01176.
[23] P. Petit,et al. Magnetic fields on young, moderately rotating Sun-like stars – II. EK Draconis (HD 129333) , 2016, 1611.07751.
[24] H. Maehara,et al. Starspot Activity and Superflares on Solar-type Stars , 2016, Proceedings of the International Astronomical Union.
[25] T. Ayres. THE FLARE-ONA OF EK DRACONIS , 2015, 1505.02320.
[26] Kazunari Shibata,et al. Statistical properties of superflares on solar-type stars based on 1-min cadence data , 2015, Earth, Planets and Space.
[27] H. Maehara,et al. SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.
[28] P. Démoulin,et al. The standard flare model in three dimensions II: upper limit on solar flare energy , 2012, 1212.2086.
[29] Takashi Nagao,et al. Can Superflares Occur on Our Sun , 2012, 1212.1361.
[30] J. Davenport,et al. TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.
[31] Toshio Nakamura,et al. A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan , 2012, Nature.
[32] Takashi Nagao,et al. Superflares on solar-type stars , 2012, Nature.
[33] K. Shibata,et al. Solar Flares: Magnetohydrodynamic Processes , 2011 .
[34] M. Kretzschmar,et al. The Sun as a star: observations of white-light flares , 2011, 1103.3125.
[35] A. Benz,et al. Flare Observations , 2016, Living Reviews in Solar Physics.
[36] E. Guinan,et al. Implications from Extreme-Ultraviolet Observations for Coronal Heating of Active Stars , 1999 .
[37] S. Hawley,et al. The Great Flare of 1985 April 12 on AD Leonis , 1991 .
[38] Doug Tody,et al. The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.
[39] W. Neupert. COMPARISON OF SOLAR X-RAY LINE EMISSION WITH MICROWAVE EMISSION DURING FLARES. , 1968 .