Classification constrained dimensionality reduction

In this paper, we propose a nonlinear dimensionality reduction method aimed at extracting lower-dimensional features relevant for classification tasks. This is obtained by modifying the Laplacian approach to manifold learning through the introduction of class dependent constraints. Using synthetic data sets, we show that the proposed algorithm can greatly improve both supervised and semi-supervised learning problems.

[1]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[2]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[3]  Nicolas Le Roux,et al.  Learning Eigenfunctions Links Spectral Embedding and Kernel PCA , 2004, Neural Computation.

[4]  Jianbo Shi,et al.  Detecting unusual activity in video , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[5]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[7]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.

[8]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[9]  Charles K. Chui,et al.  Special issue on diffusion maps and wavelets , 2006 .

[10]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[11]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[12]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[13]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[14]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[15]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[16]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[17]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[18]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[19]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[20]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[21]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[22]  Alfred O. Hero,et al.  On Dimensionality Reduction for Classification and its Application , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.