Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae
暂无分享,去创建一个
Stuart A. Sim | Michael Fink | Stefan Taubenberger | Wolfgang Hillebrandt | Ruediger Pakmor | W. Hillebrandt | M. Fink | M. Kromer | S. Taubenberger | F. Roepke | S. Sim | R. Pakmor | I. Seitenzahl | Ivo R. Seitenzahl | Markus Kromer | Ashley J. Ruiter | A. Ruiter | Franco Ciaraldi-Schoolmann | Friedrich K. Roepke | F. Ciaraldi-Schoolmann
[1] M. Reinecke,et al. Three-dimensional modeling of type Ia supernovae - The power of late time spectra , 2005, astro-ph/0504317.
[2] K. Lodders. Solar System Abundances and Condensation Temperatures of the Elements , 2003 .
[3] A. Marcowith,et al. The 511 keV emission from positron annihilation in the Galaxy , 2010, 1009.4620.
[4] A. M. Lisewski,et al. Constraints on the Delayed Transition to Detonation in Type Ia Supernovae , 1999, astro-ph/9910056.
[5] J. Craig Wheeler,et al. Deflagration-to-Detonation Transition in Thermonuclear Supernovae , 1996 .
[6] V. B. Librovich,et al. On the onset of detonation in a nonuniformly heated gas , 1970 .
[7] Nathaniel R. Butler,et al. A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.
[8] J. C. Niemeyer,et al. Delayed detonations in full-star models of type Ia supernova explosions , 2007 .
[9] R. Thomas,et al. Time-dependent Monte Carlo Radiative Transfer Calculations for Three-dimensional Supernova Spectra, Light Curves, and Polarization , 2006, astro-ph/0606111.
[10] W. Hillebrandt,et al. Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? , 2010, 1002.2173.
[11] Multi-spot ignition in type Ia supernova models , 2005, astro-ph/0510474.
[12] S. E. Woosley,et al. The diversity of type Ia supernovae from broken symmetries , 2009, Nature.
[13] I. Seitenzahl. Internal conversion electrons and supernova light curves , 2010, 1012.4647.
[14] S. E. Woosley,et al. Carbon Ignition in Type Ia Supernovae. II. A Three-dimensional Numerical Model , 2005 .
[15] R. Lingenfelter,et al. Positrons from supernovae , 1993 .
[16] A. S. Almgren,et al. HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT , 2011, 1111.3086.
[17] W. Hillebrandt,et al. Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae , 2013, 1308.4833.
[18] Caltech,et al. Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario , 2007, 0706.1094.
[19] W. Hillebrandt,et al. TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS , 2011, 1106.0582.
[20] D. Lamb,et al. SPONTANEOUS INITIATION OF DETONATIONS IN WHITE DWARF ENVIRONMENTS: DETERMINATION OF CRITICAL SIZES , 2009, 0901.3677.
[21] W. Hillebrandt,et al. NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS , 2010, 1002.2153.
[22] S. E. Woosley,et al. The conductive propagation of nuclear flames. I. Degenerate C+O and O+ Ne + Mg white dwarfs , 1992 .
[23] Off-Center Ignition in Type Ia Supernovae. I. Initial Evolution and Implications for Delayed Detonation , 2006, astro-ph/0609088.
[24] P. Chandra,et al. Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.
[25] W. Hillebrandt,et al. Stellar GADGET: a smoothed particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers , 2012, 1205.5806.
[26] R. Kirshner,et al. Confronting 2D delayed-detonation models with light curves and spectra of Type Ia supernovae , 2011, 1107.0009.
[27] S. Woosley. Type Ia Supernovae: Burning and Detonation in the Distributed Regime , 2007, 0709.4237.
[28] J. Niemeyer,et al. C+O detonations in thermonuclear supernovae: interaction with previously burned material , 2006, astro-ph/0605293.
[29] W. Hillebrandt,et al. DOUBLE-DETONATION SUB-CHANDRASEKHAR SUPERNOVAE: SYNTHETIC OBSERVABLES FOR MINIMUM HELIUM SHELL MASS MODELS , 2010, 1006.4489.
[30] Zhanwen Han,et al. The progenitors of Type Ia supernovae with long delay times , 2009, 0910.2138.
[31] Alexei M. Khokhlov,et al. Propagation of Turbulent Flames in Supernovae , 1995 .
[32] D. García-Senz,et al. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. I. DETONATION IGNITION , 2009, 0901.3008.
[33] Stefano Benetti,et al. A Common Explosion Mechanism for Type Ia Supernovae , 2007, Science.
[34] S. Taubenberger,et al. Late-time supernova light curves: the effect of internal conversion and Auger electrons , 2009, 0908.0247.
[35] Eric F Darve,et al. Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .
[36] M. Sullivan,et al. PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor , 2012, Science.
[37] R. M. Quimby,et al. Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.
[38] C. Tao,et al. CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE , 2012, 1203.4839.
[39] Following multi-dimensional type Ia supernova explosion models to homologous expansion , 2004, astro-ph/0408296.
[40] Multidimensional simulations of radiative transfer in Type Ia supernovae , 2006, astro-ph/0611677.
[41] M. Phillips,et al. The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.
[42] Nucleosynthesis in multi-dimensional SN Ia explosions , 2004, astro-ph/0406281.
[43] F. Roepke. Flame-driven Deflagration-to-Detonation Transitions in Type Ia Supernovae? , 2007, 0709.4095.
[44] F. Timmes,et al. Local Ignition in Carbon-Oxygen White Dwarfs. I. One-Zone Ignition and Spherical Shock Ignition of Detonations , 2005, astro-ph/0510367.
[45] P. Podsiadlowski,et al. The single-degenerate channel for the progenitors of Type Ia supernovae , 2003, astro-ph/0309618.
[46] Georg G. Raffelt,et al. Progress in Particle and Nuclear Physics , 2010 .
[47] S. White,et al. Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.
[48] M. Reinecke,et al. Metallicity effect in multi-dimensional SNIa nucleosynthesis , 2005, astro-ph/0507510.
[49] R. Klein,et al. A capturing - tracking hybrid scheme for deflagration discontinuities , 1997 .
[50] J. Truran,et al. Nuclear statistical equilibrium for Type Ia supernova simulations , 2009 .
[51] S. Woosley,et al. TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL , 2008, 0811.3610.
[52] K. Nomoto,et al. Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .
[53] S. E. Woosley,et al. Carbon Ignition in Type Ia Supernovae: An Analytic Model , 2003, astro-ph/0307565.
[54] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[55] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[56] W. Hillebrandt,et al. A localised subgrid scale model for fluid dynamical simulations in astrophysics II: Application to , 2006, astro-ph/0601500.
[57] S. Woosley,et al. The Thermonuclear Explosion of Chandrasekhar Mass White Dwarfs , 1996, astro-ph/9607032.
[58] Type Ia supernova diversity in three-dimensional models , 2005, astro-ph/0506107.
[59] K. Nomoto,et al. THE ROLE OF TYPE Ia SUPERNOVAE IN CHEMICAL EVOLUTION. I. LIFETIME OF TYPE Ia SUPERNOVAE AND METALLICITY EFFECT , 2007, 0801.0215.
[60] Paolo A. Mazzali,et al. A Three-Dimensional Deflagration Model for Type Ia Supernovae Compared with Observations , 2007, 0707.1024.
[61] A. Khokhlov. The structure of detonation waves in supernovae , 1989 .
[62] D. Lamb,et al. INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE , 2009, 0905.3104.
[63] K. Sreenivasan. FRACTALS AND MULTIFRACTALS IN FLUID TURBULENCE , 1991 .
[64] Lifan Wang,et al. Spectropolarimetry of Supernovae , 2008, 0811.1054.
[65] Abundance stratification in Type Ia supernovae - I. The case of SN 2002bo , 2004, astro-ph/0409342.
[66] W. Hillebrandt,et al. Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs , 2007, 0710.5486.
[67] D. Vanbeveren,et al. The delay-time distribution of Type Ia supernovae: a comparison between theory and observation , 2010, 1003.2491.
[68] S. Woosley,et al. Type IA Supernovae: The Flame Is Born , 1995 .
[69] K. Nomoto,et al. Signature of Electron Capture in Iron-rich Ejecta of SN 2003du , 2004, astro-ph/0409185.
[70] F. Roepke,et al. Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors , 2013, 1309.2397.
[71] W. Hillebrandt,et al. DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS , 2010, 1003.2917.
[72] Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.
[73] Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. , 2011 .
[74] D. Lamb,et al. STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE , 2008, 0806.4972.
[75] Chris L. Fryer,et al. RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE , 2009, 0904.3108.
[76] F. Timmes,et al. ON VARIATIONS OF THE BRIGHTNESS OF TYPE Ia SUPERNOVAE WITH THE AGE OF THE HOST STELLAR POPULATION , 2010, 1007.0910.
[77] F. Roepke,et al. Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models , 2010, 1012.4929.
[78] W. Hillebrandt,et al. THE IMPACT OF TYPE Ia SUPERNOVA EXPLOSIONS ON HELIUM COMPANIONS IN THE CHANDRASEKHAR-MASS EXPLOSION SCENARIO , 2013, 1307.5579.
[79] W. Hillebrandt,et al. NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES , 2012, 1201.5123.
[80] F. Timmes,et al. TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .
[81] R. Margutti,et al. EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe , 2012, 1201.0994.
[82] Elaine S. Oran,et al. Multilevel Structure of Cellular Detonations in Type Ia Supernovae , 1999 .
[83] Eli Livne,et al. Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .
[84] W. Hillebrandt,et al. The ignition of thermonuclear flames in type Ia supernovae , 2005, astro-ph/0512300.
[85] Stuart A. Sim,et al. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2010, Nature.
[86] K. Nomoto,et al. The Role of Electron Captures in Chandrasekhar-Mass Models for Type Ia Supernovae , 2000, astro-ph/0001464.
[87] M. Fink,et al. Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles , 2010, 1005.5071.
[88] D. Lamb,et al. Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae , 2007 .
[89] Marat Gilfanov,et al. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate , 2010, Nature.
[90] Koichi Iwamoto,et al. Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .
[91] W. Arnett,et al. A possible model of supernovae: Detonation of12C , 1969 .
[92] P. Nugent,et al. Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.
[93] Alan R. Kerstein,et al. Fractal Dimension of Turbulent Premixed Flames , 1988 .
[94] D. García-Senz,et al. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION , 2009, 0901.3013.
[95] D. Lunney,et al. Atomic Data and Nuclear Data Tables , 2015 .
[96] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[97] P. Moin,et al. Annual Review of Fluid Mechanics , 1994 .
[98] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[99] J. Sollerman,et al. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.
[100] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[101] E. Livne,et al. Geometrical Effects in Off-Center Detonation of Helium Shells , 1990 .
[102] A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests , 2006, astro-ph/0601499.
[103] J. Stein,et al. On the Thermonuclear Runaway in Type Ia Supernovae: How to Run Away? , 2001, astro-ph/0104226.
[104] M. Phillips,et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.
[105] A. T. Onufriev,et al. JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS (SELECTED ARTICLES) , 1968 .
[106] P. Hoeflich,et al. Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996 .
[107] D. García-Senz,et al. A three-dimensional picture of the delayed-detonation model of type Ia supernovae , 2007, 0712.0510.
[108] E. Oran,et al. Three-dimensional Delayed-Detonation Model of Type Ia Supernovae , 2004, astro-ph/0409598.
[109] D. Prialnik,et al. An extended grid of multicycle nova evolution models , 1995 .
[110] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.