Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae

We present results for a suite of fourteen three-dimensional, high resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN I a simulations with detailed isotopic yield information. As such, it may serve as a database for Chandrasekhar-mass delayeddetonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ t he deflagration to detonation transition (DDT) probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300, and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with central density of 2.9× 10 9 g cm −3 , plus in addition one high central density (5.5× 10 9 g cm −3 ) and one low central density (1.0× 10 9 g cm −3 ) rendition of the 100 ignition kernel configuration. For each simulatio n we determined detailed nucleosynthetic yields by post-processing 10 6 tracer particles with a 384 nuclide reaction network. All delayed detonation models result in explosions unbinding the white dwarf, producing a range of 56 Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron group isotopes are not found at the lowest velocities, but rather at intermediate velocities (∼3, 000− 10, 000 km s −1 ) in a shell surrounding a 56 Ni-rich core. The models further predict relatively low velocity oxygen and carbon, with typical minimum velocities around 4, 000 and 10, 000 km s −1 , respectively.

[1]  M. Reinecke,et al.  Three-dimensional modeling of type Ia supernovae - The power of late time spectra , 2005, astro-ph/0504317.

[2]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[3]  A. Marcowith,et al.  The 511 keV emission from positron annihilation in the Galaxy , 2010, 1009.4620.

[4]  A. M. Lisewski,et al.  Constraints on the Delayed Transition to Detonation in Type Ia Supernovae , 1999, astro-ph/9910056.

[5]  J. Craig Wheeler,et al.  Deflagration-to-Detonation Transition in Thermonuclear Supernovae , 1996 .

[6]  V. B. Librovich,et al.  On the onset of detonation in a nonuniformly heated gas , 1970 .

[7]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[8]  J. C. Niemeyer,et al.  Delayed detonations in full-star models of type Ia supernova explosions , 2007 .

[9]  R. Thomas,et al.  Time-dependent Monte Carlo Radiative Transfer Calculations for Three-dimensional Supernova Spectra, Light Curves, and Polarization , 2006, astro-ph/0606111.

[10]  W. Hillebrandt,et al.  Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? , 2010, 1002.2173.

[11]  Multi-spot ignition in type Ia supernova models , 2005, astro-ph/0510474.

[12]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[13]  I. Seitenzahl Internal conversion electrons and supernova light curves , 2010, 1012.4647.

[14]  S. E. Woosley,et al.  Carbon Ignition in Type Ia Supernovae. II. A Three-dimensional Numerical Model , 2005 .

[15]  R. Lingenfelter,et al.  Positrons from supernovae , 1993 .

[16]  A. S. Almgren,et al.  HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT , 2011, 1111.3086.

[17]  W. Hillebrandt,et al.  Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae , 2013, 1308.4833.

[18]  Caltech,et al.  Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario , 2007, 0706.1094.

[19]  W. Hillebrandt,et al.  TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS , 2011, 1106.0582.

[20]  D. Lamb,et al.  SPONTANEOUS INITIATION OF DETONATIONS IN WHITE DWARF ENVIRONMENTS: DETERMINATION OF CRITICAL SIZES , 2009, 0901.3677.

[21]  W. Hillebrandt,et al.  NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS , 2010, 1002.2153.

[22]  S. E. Woosley,et al.  The conductive propagation of nuclear flames. I. Degenerate C+O and O+ Ne + Mg white dwarfs , 1992 .

[23]  Off-Center Ignition in Type Ia Supernovae. I. Initial Evolution and Implications for Delayed Detonation , 2006, astro-ph/0609088.

[24]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[25]  W. Hillebrandt,et al.  Stellar GADGET: a smoothed particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers , 2012, 1205.5806.

[26]  R. Kirshner,et al.  Confronting 2D delayed-detonation models with light curves and spectra of Type Ia supernovae , 2011, 1107.0009.

[27]  S. Woosley Type Ia Supernovae: Burning and Detonation in the Distributed Regime , 2007, 0709.4237.

[28]  J. Niemeyer,et al.  C+O detonations in thermonuclear supernovae: interaction with previously burned material , 2006, astro-ph/0605293.

[29]  W. Hillebrandt,et al.  DOUBLE-DETONATION SUB-CHANDRASEKHAR SUPERNOVAE: SYNTHETIC OBSERVABLES FOR MINIMUM HELIUM SHELL MASS MODELS , 2010, 1006.4489.

[30]  Zhanwen Han,et al.  The progenitors of Type Ia supernovae with long delay times , 2009, 0910.2138.

[31]  Alexei M. Khokhlov,et al.  Propagation of Turbulent Flames in Supernovae , 1995 .

[32]  D. García-Senz,et al.  PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. I. DETONATION IGNITION , 2009, 0901.3008.

[33]  Stefano Benetti,et al.  A Common Explosion Mechanism for Type Ia Supernovae , 2007, Science.

[34]  S. Taubenberger,et al.  Late-time supernova light curves: the effect of internal conversion and Auger electrons , 2009, 0908.0247.

[35]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .

[36]  M. Sullivan,et al.  PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor , 2012, Science.

[37]  R. M. Quimby,et al.  Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.

[38]  C. Tao,et al.  CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE , 2012, 1203.4839.

[39]  Following multi-dimensional type Ia supernova explosion models to homologous expansion , 2004, astro-ph/0408296.

[40]  Multidimensional simulations of radiative transfer in Type Ia supernovae , 2006, astro-ph/0611677.

[41]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[42]  Nucleosynthesis in multi-dimensional SN Ia explosions , 2004, astro-ph/0406281.

[43]  F. Roepke Flame-driven Deflagration-to-Detonation Transitions in Type Ia Supernovae? , 2007, 0709.4095.

[44]  F. Timmes,et al.  Local Ignition in Carbon-Oxygen White Dwarfs. I. One-Zone Ignition and Spherical Shock Ignition of Detonations , 2005, astro-ph/0510367.

[45]  P. Podsiadlowski,et al.  The single-degenerate channel for the progenitors of Type Ia supernovae , 2003, astro-ph/0309618.

[46]  Georg G. Raffelt,et al.  Progress in Particle and Nuclear Physics , 2010 .

[47]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[48]  M. Reinecke,et al.  Metallicity effect in multi-dimensional SNIa nucleosynthesis , 2005, astro-ph/0507510.

[49]  R. Klein,et al.  A capturing - tracking hybrid scheme for deflagration discontinuities , 1997 .

[50]  J. Truran,et al.  Nuclear statistical equilibrium for Type Ia supernova simulations , 2009 .

[51]  S. Woosley,et al.  TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL , 2008, 0811.3610.

[52]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[53]  S. E. Woosley,et al.  Carbon Ignition in Type Ia Supernovae: An Analytic Model , 2003, astro-ph/0307565.

[54]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[55]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[56]  W. Hillebrandt,et al.  A localised subgrid scale model for fluid dynamical simulations in astrophysics II: Application to , 2006, astro-ph/0601500.

[57]  S. Woosley,et al.  The Thermonuclear Explosion of Chandrasekhar Mass White Dwarfs , 1996, astro-ph/9607032.

[58]  Type Ia supernova diversity in three-dimensional models , 2005, astro-ph/0506107.

[59]  K. Nomoto,et al.  THE ROLE OF TYPE Ia SUPERNOVAE IN CHEMICAL EVOLUTION. I. LIFETIME OF TYPE Ia SUPERNOVAE AND METALLICITY EFFECT , 2007, 0801.0215.

[60]  Paolo A. Mazzali,et al.  A Three-Dimensional Deflagration Model for Type Ia Supernovae Compared with Observations , 2007, 0707.1024.

[61]  A. Khokhlov The structure of detonation waves in supernovae , 1989 .

[62]  D. Lamb,et al.  INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE , 2009, 0905.3104.

[63]  K. Sreenivasan FRACTALS AND MULTIFRACTALS IN FLUID TURBULENCE , 1991 .

[64]  Lifan Wang,et al.  Spectropolarimetry of Supernovae , 2008, 0811.1054.

[65]  Abundance stratification in Type Ia supernovae - I. The case of SN 2002bo , 2004, astro-ph/0409342.

[66]  W. Hillebrandt,et al.  Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs , 2007, 0710.5486.

[67]  D. Vanbeveren,et al.  The delay-time distribution of Type Ia supernovae: a comparison between theory and observation , 2010, 1003.2491.

[68]  S. Woosley,et al.  Type IA Supernovae: The Flame Is Born , 1995 .

[69]  K. Nomoto,et al.  Signature of Electron Capture in Iron-rich Ejecta of SN 2003du , 2004, astro-ph/0409185.

[70]  F. Roepke,et al.  Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors , 2013, 1309.2397.

[71]  W. Hillebrandt,et al.  DETONATIONS IN SUB-CHANDRASEKHAR-MASS C+O WHITE DWARFS , 2010, 1003.2917.

[72]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[73]  Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. , 2011 .

[74]  D. Lamb,et al.  STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE , 2008, 0806.4972.

[75]  Chris L. Fryer,et al.  RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE , 2009, 0904.3108.

[76]  F. Timmes,et al.  ON VARIATIONS OF THE BRIGHTNESS OF TYPE Ia SUPERNOVAE WITH THE AGE OF THE HOST STELLAR POPULATION , 2010, 1007.0910.

[77]  F. Roepke,et al.  Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models , 2010, 1012.4929.

[78]  W. Hillebrandt,et al.  THE IMPACT OF TYPE Ia SUPERNOVA EXPLOSIONS ON HELIUM COMPANIONS IN THE CHANDRASEKHAR-MASS EXPLOSION SCENARIO , 2013, 1307.5579.

[79]  W. Hillebrandt,et al.  NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES , 2012, 1201.5123.

[80]  F. Timmes,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .

[81]  R. Margutti,et al.  EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe , 2012, 1201.0994.

[82]  Elaine S. Oran,et al.  Multilevel Structure of Cellular Detonations in Type Ia Supernovae , 1999 .

[83]  Eli Livne,et al.  Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae , 1990 .

[84]  W. Hillebrandt,et al.  The ignition of thermonuclear flames in type Ia supernovae , 2005, astro-ph/0512300.

[85]  Stuart A. Sim,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2010, Nature.

[86]  K. Nomoto,et al.  The Role of Electron Captures in Chandrasekhar-Mass Models for Type Ia Supernovae , 2000, astro-ph/0001464.

[87]  M. Fink,et al.  Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles , 2010, 1005.5071.

[88]  D. Lamb,et al.  Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae , 2007 .

[89]  Marat Gilfanov,et al.  An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate , 2010, Nature.

[90]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[91]  W. Arnett,et al.  A possible model of supernovae: Detonation of12C , 1969 .

[92]  P. Nugent,et al.  Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.

[93]  Alan R. Kerstein,et al.  Fractal Dimension of Turbulent Premixed Flames , 1988 .

[94]  D. García-Senz,et al.  PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION , 2009, 0901.3013.

[95]  D. Lunney,et al.  Atomic Data and Nuclear Data Tables , 2015 .

[96]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[97]  P. Moin,et al.  Annual Review of Fluid Mechanics , 1994 .

[98]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[99]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[100]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[101]  E. Livne,et al.  Geometrical Effects in Off-Center Detonation of Helium Shells , 1990 .

[102]  A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests , 2006, astro-ph/0601499.

[103]  J. Stein,et al.  On the Thermonuclear Runaway in Type Ia Supernovae: How to Run Away? , 2001, astro-ph/0104226.

[104]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[105]  A. T. Onufriev,et al.  JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS (SELECTED ARTICLES) , 1968 .

[106]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996 .

[107]  D. García-Senz,et al.  A three-dimensional picture of the delayed-detonation model of type Ia supernovae , 2007, 0712.0510.

[108]  E. Oran,et al.  Three-dimensional Delayed-Detonation Model of Type Ia Supernovae , 2004, astro-ph/0409598.

[109]  D. Prialnik,et al.  An extended grid of multicycle nova evolution models , 1995 .

[110]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.