An alternative method for electrophoretic gel image analysis in the GelMaster software

A novel methodology of electrophoretic gel image analysis has been proposed that is based on two-dimensional image processing methods instead of previously used one-dimensional Gaussian deconvolution. The crucial problem of the analysis of imperfect gels, that consists in band detection, is solved using the algorithms of band boundary detection and intensity homogeneity indication. The template approach represents the core element of the developed algorithms. The GelMaster software system has been developed in which the novel algorithms are implemented. It involves two-stage interaction with the user: detection of the true bands and deleting the false band detections. The main features of the GelMaster system and the most important algorithms are described.

[1]  J. Pánek,et al.  Quantitative analysis of gel electrophoretograms by image analysis and least squares modeling , 1993, Electrophoresis.

[2]  Ivan Bajla,et al.  A novel approach to quantitative analysis of electrophoretic gel images of DNA fragments , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[3]  C. A. Read,et al.  The use of charge‐coupled devices in the quantitative evaluation of images, on photographic film or membranes, obtained following electrophoretic separation of DNA fragments , 1990, Electrophoresis.

[4]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[5]  S. FojonReboredo Advances in Electrophoresis , 1989 .

[6]  P.M. Nugues,et al.  Two-dimensional electrophoresis image interpretation , 1993, IEEE Transactions on Biomedical Engineering.

[7]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[8]  Ivan Bajla,et al.  Nonlinear filtering of magnetic resonance tomograms by geometry-driven diffusion , 1998, Machine Vision and Applications.

[9]  D. Tietz Nucleic Acid Electrophoresis , 1998, Springer Lab Manual.

[10]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[11]  A. Görg,et al.  The current state of two‐dimensional electrophoresis with immobilized pH gradients , 2000, Electrophoresis.

[12]  I. Holländer,et al.  Improvement of Electrophoretic Gel Image Analysis , 2001 .

[13]  R. Rapley,et al.  Molecular Biomethods Handbook , 1998, Humana Press.

[14]  A. Andrews Electrophoresis: Theory, Techniques, and Biochemical and Clinical Applications , 1981 .

[15]  Donat-Peter Häder Image analysis : methods and applications , 2001 .

[16]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[17]  Angelika Görg,et al.  Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients , 1988 .

[18]  S. FOJON REBOREDO [Advances in electrophoresis]. , 1960, "Laboratorio;" analisis clinicos, bacteriologia, inmunologia, parasitologia, hematologia, anatomia patologica, quimica clinica.

[19]  M J Dunn,et al.  Two-dimensional gel electrophoresis of proteins , 1987, Journal of chromatography.

[20]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[22]  Donat-P Häder,et al.  Computer-assisted image analysis in biological sciences , 1988, Proceedings / Indian Academy of Sciences.

[23]  C. Glasbey,et al.  Uses of digital image analysis in electrophoresis , 1995, Electrophoresis.