Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications.

............................................................................................................................... xvi Chapter

[1]  D. Foster,et al.  Compression-Ignited Homogeneous Charge Combustion , 1983 .

[2]  J. Dec,et al.  Fuel Stratification for Low-Load HCCI Combustion: Performance & Fuel-PLIF Measurements , 2007 .

[3]  R. Reitz,et al.  Progress and recent trends in reactivity-controlled compression ignition engines , 2016 .

[4]  Tarek Echekki,et al.  Analysis of the contribution of curvature to premixed flame propagation , 1999 .

[5]  John E. Dec,et al.  A Parametric Study of HCCI Combustion - the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection , 2003 .

[6]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[7]  S. Khomik,et al.  Ignition delay in hydrogen–air and syngas–air mixtures: Experimental data interpretation via flame propagation , 2010 .

[8]  R. Breault,et al.  System Issues and Tradeoffs Associated with Syngas Production and Combustion , 2008 .

[9]  F. Dryer,et al.  A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion , 2007 .

[10]  John E. Dec,et al.  Advanced compression-ignition engines—understanding the in-cylinder processes , 2009 .

[11]  Giovanni Lozza,et al.  Using Hydrogen as Gas Turbine Fuel , 2003 .

[12]  Tianfeng Lu,et al.  Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study , 2011 .

[13]  Peng Zhang,et al.  Effects of temperature inhomogeneities on the HCCI combustion in an optical engine , 2011 .

[14]  S. Shabunya,et al.  High-Temperature Ignition of Hydrogen and Air at High Pressures Downstream of the Reflected Shock Wave , 2004 .

[15]  Peter Glarborg,et al.  Hidden interactions—Trace species governing combustion and emissions , 2007 .

[16]  R. I. Soloukhin,et al.  On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves , 1965 .

[17]  Bradley T. Zigler,et al.  An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications , 2007 .

[18]  Robert W. Dibble,et al.  Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver , 2003 .

[19]  T. Lu,et al.  Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion , 2015 .

[20]  S. H. Jo,et al.  Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines , 1979 .

[21]  Tianfeng Lu,et al.  Direct numerical simulations of HCCI/SACI with ethanol , 2014 .

[22]  Marcos Chaos,et al.  Syngas Combustion Kinetics and Applications , 2008 .

[23]  Tianfeng Lu,et al.  A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions , 2013 .

[24]  S. Girimaji Assumed β-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing , 1991 .

[25]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[26]  Andrew B. Mansfield,et al.  A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations , 2015 .

[27]  R. Reitz Directions in internal combustion engine research , 2013 .

[28]  A. K. Oppenheim,et al.  On the shock-induced ignition of explosive gases , 1971 .

[29]  D. J. Wilhelm,et al.  Syngas production for gas-to-liquids applications: technologies, issues and outlook , 2001 .

[30]  Dennis N. Assanis,et al.  A Spray-Interactive Flamelet Model for Direct Injection Engine Combustion , 2012 .

[31]  Peter J. O'Rourke,et al.  The TAB method for numerical calculation of spray droplet breakup , 1987 .

[32]  Ankit Bhagatwala,et al.  Numerical investigation of spontaneous flame propagation under RCCI conditions , 2015 .

[33]  Pinaki Pal,et al.  Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines , 2016 .

[34]  Margaret S. Wooldridge,et al.  A multi-mode combustion diagram for spark assisted compression ignition , 2010 .

[35]  Zhen Huang,et al.  Fuel design and management for the control of advanced compression-ignition combustion modes , 2011 .

[36]  Hong G. Im,et al.  The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture , 2005 .

[37]  Randall Gemmen,et al.  Issues for low-emission, fuel-flexible power systems , 2001 .

[38]  J Y. Chen,et al.  Development and validation of isooctane skeletal mechanisms based on LLNL detailed mechanism , 2008 .

[39]  Saurabh Gupta,et al.  Classification of ignition regimes in HCCI combustion using computational singular perturbation , 2011 .

[40]  Matthias Ihme,et al.  On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures , 2012 .

[41]  Takayuki Fuyuto,et al.  Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability , 2006 .

[42]  Robert H. Williams,et al.  Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions , 2005 .

[43]  John E. Dec,et al.  Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline , 2011 .

[44]  Daniel L. Flowers,et al.  Effect of Charge Non-uniformity on Heat Release and Emissions in PCCI Engine Combustion , 2006 .

[45]  T. Lu,et al.  Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature , 2014 .

[46]  Forman A. Williams,et al.  Fundamental Aspects of Combustion , 1963, Nature.

[47]  Samveg Saxena,et al.  Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits , 2013 .

[48]  Robert W. Bilger,et al.  Turbulent diffusion flames , 1973 .

[49]  David R. Emerson,et al.  Modes of reaction front propagation from hot spots , 2003 .

[50]  Christian Hasse,et al.  A two mixture fraction flamelet model applied to split injections in a DI Diesel engine , 2005 .

[51]  Rudolf H. Stanglmaier,et al.  Homogeneous charge compression ignition (HCCI): Benefits, compromises, and future engine applications , 1999 .

[52]  Tim Lieuwen,et al.  Burner Development and Operability Issues Associated with Steady Flowing Syngas Fired Combustors , 2008 .

[53]  Heinz Pitsch,et al.  3d Simulation of Di Diesel Combustion and Pollutant Formation Using a Two-Component Reference Fuel , 1999 .

[54]  Andrew B. Mansfield,et al.  A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities , 2015 .

[55]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[56]  J. Eng,et al.  Characterization of Pressure Waves in HCCI Combustion , 2002 .

[57]  Mingfa Yao,et al.  Progress and recent trends in homogeneous charge compression ignition (HCCI) engines , 2009 .

[58]  Ryo Hasegawa,et al.  HCCI Combustion in DI Diesel Engine , 2003 .

[59]  Heinz Pitsch,et al.  Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach , 1996 .

[60]  J. Boris,et al.  Weak and strong ignition. II. Sensitivity of the hydrogenoxygen system , 1982 .

[61]  Andrew B. Mansfield,et al.  High-pressure low-temperature ignition behavior of syngas mixtures , 2014 .

[62]  S M Aceves,et al.  A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines , 2005 .

[63]  Fuquan Zhao,et al.  Homogeneous charge compression ignition (HCCI) engines : key research and development issues , 2003 .

[64]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[65]  N. Peters,et al.  Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames , 1998 .

[66]  Nicholas P. Cernansky,et al.  Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments , 2005 .

[67]  Habib N. Najm,et al.  An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP , 2006 .

[68]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[69]  Y. Zeldovich,et al.  Regime classification of an exothermic reaction with nonuniform initial conditions , 1980 .

[70]  Seunghwan Keum,et al.  An extended multi-zone combustion model for PCI simulation , 2011 .

[71]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[72]  Heinz Pitsch,et al.  Numerical Investigation of Soot Formation and Oxidation Under Diesel Engine Conditions , 1995 .

[73]  Heinz Pitsch,et al.  Numerical Investigation of Unburnt Hydrocarbon Emissions in a Homogeneous-Charge Late-Injection Diesel-Fueled Engine , 2008 .

[74]  Heinz Pitsch,et al.  An extended multi-regime flamelet model for IC engines , 2012 .

[75]  Chih-Jen Sung,et al.  Aerodynamics inside a rapid compression machine , 2006 .

[76]  Robert W. Dibble,et al.  A Multi-Zone Model for Prediction of HCCI Combustion and Emissions , 2000 .

[77]  John E. Dec,et al.  An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines , 2004 .

[78]  Vincent McDonell,et al.  New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models , 2007 .

[79]  Tianfeng Lu,et al.  Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities , 2013 .

[80]  Herbert Olivier,et al.  A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes , 2014 .

[81]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[82]  Elaine S. Oran,et al.  Weak and strong ignition. I. Numerical simulations of shock tube experiments , 1982 .

[83]  Bengt Johansson,et al.  The Effect of In-Cylinder Flow and Turbulence on HCCI Operation , 2002 .

[84]  G. Adomeit,et al.  Self ignition of H2-air mixtures at high pressure and low temperature , 1995 .

[85]  Jacqueline H. Chen,et al.  A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature , 2015 .

[86]  Dennis N. Assanis,et al.  Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates , 2004 .

[87]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[88]  Marcos Chaos,et al.  Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures : Experimental data interpretation and kinetic modeling implications , 2008 .

[89]  Chih-Jen Sung,et al.  Fundamental Combustion Properties of H2/CO Mixtures: Ignition and Flame Propagation at Elevated Pressures , 2008 .

[90]  V. McDonell,et al.  Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion , 2008 .

[91]  E. A. COULSON,et al.  The Fischer–Tropsch Process , 1950, Nature.

[92]  H. Im,et al.  Structure and propagation of triple flames in partially premixed hydrogen-air mixtures , 1999 .

[93]  N. Peters,et al.  Applying the Representative Interactive Flamelet Model to Evaluate the Potential Effect of Wall Heat Transfer on Soot Emissions in a Small-Bore Direct-Injection Diesel Engine , 2002 .

[94]  J. Heywood,et al.  Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines , 1970 .

[95]  M. Ihme,et al.  Effects of flow-field and mixture inhomogeneities on the ignition dynamics in continuous flow reactors , 2014 .

[96]  A. A. Amsden,et al.  KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves , 1997 .

[97]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[98]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[99]  Gaurav Bansal,et al.  Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures , 2015 .

[100]  Norbert Peters,et al.  Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model , 2000 .

[101]  Heinz Pitsch,et al.  Multi-Dimensional Flamelet Modeling of Multiple Injection Diesel Engines , 2012 .

[102]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[103]  Bengt Johansson,et al.  The Effect of Combustion Chamber Geometry on HCCI Operation , 2002 .

[104]  R. Reitz,et al.  Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models , 1995 .

[105]  Dennis N. Assanis,et al.  Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies , 2003 .

[106]  H. Im,et al.  Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics , 2006 .

[107]  Philippe Pierre Pebay,et al.  Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. II. Parametric study , 2006 .

[108]  H. Im,et al.  Effects of fuel injection parameters on the performance of homogeneous charge compression ignition at low-load conditions , 2016 .