Dynamism and context dependency in the diversification of the megadiverse plant genus Solanum L. (Solanaceae)

Explosive radiations have been considered one of the most intriguing diversification patterns across the Tree of Life, but the subsequent change, movement and extinction of the constituent species makes radiations hard to discern or understand as geological time passes. We synthesised phylogenetic and distributional data for an ongoing radiation — the mega-diverse plant genus Solanum L. — to show how dispersal events and past climatic changes have interacted to shape diversification. We found that despite the vast diversity of Solanum lineages in the Neotropics, lineages in the Old World are diversifying more rapidly. This recent explosive diversification coincides with a long-distance dispersal event from the Neotropics, at the time when, and to places where, major climatic changes took place. Two different groups of Solanum have migrated and established in Australia, but only the arid-adapted lineages experienced significant increases in their diversification, which is consistent with adaptation to the continent’s long-term climatic trend and the diversification of other arid-adapted groups. Our findings provide a clear example of how successful colonisation of new areas and niches can – but do not always – drive explosive radiations.

[1]  R. Olmstead,et al.  Bayesian estimation of the global biogeographical history of the Solanaceae , 2017 .

[2]  G. Thomas,et al.  The impact of rate heterogeneity on inference of phylogenetic models of trait evolution , 2016, Journal of evolutionary biology.

[3]  Sebastian Höhna,et al.  Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures , 2016, Proceedings of the National Academy of Sciences.

[4]  S. Knapp,et al.  A revision of the “African Non-Spiny” Clade of Solanum L. (Solanum sections Afrosolanum Bitter, Benderianum Bitter, Lemurisolanum Bitter, Lyciosolanum Bitter, Macronesiotes Bitter, and Quadrangulare Bitter: Solanaceae) , 2016, PhytoKeys.

[5]  Mozes P. K. Blom,et al.  Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards , 2016, Proceedings of the Royal Society B: Biological Sciences.

[6]  S. Knapp,et al.  Tropical Asian species show that the Old World clade of ‘spiny solanums’ (Solanum subgenus Leptostemonum pro parte: Solanaceae) is not monophyletic , 2016 .

[7]  Michael J. Landis,et al.  RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language , 2016, Systematic biology.

[8]  D. Rabosky No substitute for real data: A cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses , 2015, Evolution; international journal of organic evolution.

[9]  J. Wiens Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. , 2015, Ecology letters.

[10]  M. Donoghue,et al.  Confluence, synnovation, and depauperons in plant diversification. , 2015, The New phytologist.

[11]  M. R. May,et al.  TESS: Bayesian inference of lineage diversification rates from (incompletely sampled) molecular phylogenies in R , 2015, bioRxiv.

[12]  Daniel L. Rabosky,et al.  BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees , 2014 .

[13]  H. Morlon Phylogenetic approaches for studying diversification. , 2014, Ecology letters.

[14]  Matthew W. Pennell,et al.  Functional distinctiveness of major plant lineages , 2014 .

[15]  D. Rabosky Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees , 2014, PloS one.

[16]  David C. Tank,et al.  Three keys to the radiation of angiosperms into freezing environments , 2013, Nature.

[17]  M. Crisp,et al.  How Was the Australian Flora Assembled Over the Last 65 Million Years? A Molecular Phylogenetic Perspective , 2013 .

[18]  W. Jetz,et al.  PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences , 2013 .

[19]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[20]  L. Bohs,et al.  African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle , 2013 .

[21]  R. Olmstead,et al.  A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree , 2013, BMC Evolutionary Biology.

[22]  M. Donoghue,et al.  Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. , 2013, Systematic biology.

[23]  Stephen A. Smith,et al.  Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation , 2013, Nature Communications.

[24]  T. Stadler Recovering speciation and extinction dynamics based on phylogenies , 2013, Journal of evolutionary biology.

[25]  M. Harrington,et al.  Phylogenetic revision of Backhousieae (Myrtaceae): Neogene divergence, a revised circumscription of Backhousia and two new species , 2012, Australian Systematic Botany.

[26]  L. Bohs,et al.  Molecular delimitation of clades within New World species of the "spiny solanums" (Solanum subg. Leptostemonum) , 2011, Taxon.

[27]  J. Keogh,et al.  Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota , 2011 .

[28]  Tanja Stadler,et al.  Inferring speciation and extinction rates under different sampling schemes. , 2011, Molecular biology and evolution.

[29]  J. Wiens,et al.  The Causes Of Species Richness Patterns Across Space, Time, And Clades And The Role Of “Ecological Limits” , 2011, The Quarterly Review of Biology.

[30]  Tanja Stadler,et al.  Mammalian phylogeny reveals recent diversification rate shifts , 2011, Proceedings of the National Academy of Sciences.

[31]  Péter Poczai,et al.  Phylogeny of kangaroo apples (Solanum subg. Archaesolanum, Solanaceae) , 2011, Molecular Biology Reports.

[32]  L. H. Liow,et al.  When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? , 2010, Systematic biology.

[33]  W. Godsoe,et al.  Ecological opportunity and the origin of adaptive radiations , 2010, Journal of evolutionary biology.

[34]  Charles R Marshall,et al.  Diversity dynamics: molecular phylogenies need the fossil record. , 2010, Trends in ecology & evolution.

[35]  Daniel L Rabosky,et al.  EXTINCTION RATES SHOULD NOT BE ESTIMATED FROM MOLECULAR PHYLOGENIES , 2010, Evolution; international journal of organic evolution.

[36]  Jonathan B. Losos,et al.  Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism , 2010, The American Naturalist.

[37]  L. Bohs,et al.  Eggplant origins: out of Africa, into the orient. , 2010 .

[38]  Chad D. Brock,et al.  Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates , 2009, Proceedings of the National Academy of Sciences.

[39]  M. Kearney,et al.  Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota , 2008, Molecular ecology.

[40]  I. Lovette,et al.  Exceptional among-lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade , 2007, Proceedings of the Royal Society B: Biological Sciences.

[41]  R. Ricklefs,et al.  Estimating diversification rates from phylogenetic information. , 2007, Trends in ecology & evolution.

[42]  M. Donoghue,et al.  Correlates of Diversification in the Plant Clade Dipsacales: Geographic Movement and Evolutionary Innovations , 2007, The American Naturalist.

[43]  M. Crisp,et al.  A congruent molecular signature of vicariance across multiple plant lineages. , 2007, Molecular phylogenetics and evolution.

[44]  L. Bohs,et al.  A Three-Gene Phylogeny of the Genus Solanum (Solanaceae) , 2007 .

[45]  D. Schluter,et al.  The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals , 2007, Science.

[46]  Mark A McPeek,et al.  Clade Age and Not Diversification Rate Explains Species Richness among Animal Taxa , 2007, The American Naturalist.

[47]  M. Rossetto,et al.  Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. , 2006, American journal of botany.

[48]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[49]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[50]  M. Chase,et al.  Environment, Area, and Diversification in the Species‐Rich Flowering Plant Family Iridaceae , 2005, The American Naturalist.

[51]  M. Donoghue Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny , 2005, Paleobiology.

[52]  D. Steane,et al.  Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  D. Frodin History and Concepts of Big Plant Genera , 2004 .

[54]  J. Losos,et al.  Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.

[55]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[56]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[57]  Jonathan P. Bollback,et al.  Stochastic mapping of morphological characters. , 2003, Systematic biology.

[58]  A. Queiroz Contingent predictability in evolution: key traits and diversification. , 2002 .

[59]  Barry Cox The biogeographic regions reconsidered , 2001 .

[60]  Barry Cox The biogeographic regions reconsidered , 2001 .

[61]  D. Schluter,et al.  Analysis of an evolutionary species–area relationship , 2000, Nature.

[62]  H. Prosper Bayesian Analysis , 2000, hep-ph/0006356.

[63]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[64]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[65]  C. Guyer,et al.  Testing Whether Certain Traits have Caused Amplified Diversification: An Improved Method Based on a Model of Random Speciation and Extinction , 1993, The American Naturalist.

[66]  M. Whalen Conspectus of species group in solanum subgenus leptostemonum , 1984 .

[67]  M. Whalen,et al.  Phylogeny in Solanum sect. Lasiocarpa (Solanaceae): Congruence of Morphological and Molecular Data , 1983 .

[68]  M. Whalen Allozyme Variation and Evolution in Solanum section Androceras , 1979 .

[69]  Stephen Jay Gould,et al.  Stochastic Models of Phylogeny and the Evolution of Diversity , 1973, The Journal of Geology.

[70]  J. Hawkes,et al.  Continental Drift: Continental Drift and the Age of Angiosperm Genera , 1965, Nature.

[71]  George Gaylord Simpson,et al.  Major Features Of Evolution , 1954 .

[72]  B. Lieberman,et al.  The Evolving Theory of Evolutionary Radiations. , 2016, Trends in ecology & evolution.

[73]  C. Mayr,et al.  The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals , 2007 .

[74]  L. Bohs,et al.  Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae) , 2006 .

[75]  D. Schluter,et al.  The Ecology of Adaptive Radiation , 2000 .

[76]  J. Palmer,et al.  Implications for the Phylogeny, Classification, and Biogeography of Solanum from cpDNA Restriction Site Variation , 1997 .

[77]  D. Symon A revision of the genus Solanum in Australia. , 1981 .

[78]  Alan F. Karr,et al.  Natural clades differ from “random” clades: simulations and analyses , 1981, Paleobiology.

[79]  S. A. Barnett,et al.  The major features of evolution , 1955 .