Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4

The recent discovered antiferromagnetic topological insulators in Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle-resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi$_2$Te$_4$ exists between the bulk band gap. Such unexpected surface state remains unchanged across the bulk Neel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and $\textit{ab}$-$\textit{initio}$ calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results reveal that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases such as topological crystalline insulator and time-reversal-preserved topological insulator, by tuning the magnetic configurations.

[1]  K. Nielsch,et al.  Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4 , 2018, Chemistry of Materials.

[2]  Lin Zhao,et al.  Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment , 2011, Proceedings of the National Academy of Sciences.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[5]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[6]  Q. Zhang,et al.  Crystal growth and magnetic structure of MnBi2Te4 , 2019, Physical Review Materials.

[7]  Shou-Cheng Zhang,et al.  Electrically controllable surface magnetism on the surface of topological insulators. , 2010, Physical review letters.

[8]  Chong Wang,et al.  Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[9]  L. Fu Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. , 2009, Physical review letters.

[10]  A. Arnau,et al.  Antiferromagnetic topological insulator MnBi 2 Te 4 , 2019 .

[11]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[12]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[13]  Y. Tokura,et al.  Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator , 2014, Nature Physics.

[14]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[15]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[16]  N. P. Armitage,et al.  On the matter of topological insulators as magnetoelectrics , 2018, SciPost Physics.

[17]  A. Arnau,et al.  Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects , 2017, 1810.00235.

[18]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[19]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[20]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[21]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[22]  Yu Wang,et al.  Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4 , 2018, Physical Review Research.

[23]  Su-Yang Xu,et al.  A topological insulator surface under strong Coulomb, magnetic and disorder perturbations , 2011, 1103.3411.

[24]  Nitin Samarth,et al.  Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures. , 2017, Physical review letters.

[25]  Qihang Liu,et al.  A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling , 2019, Nature Communications.

[26]  B. Andrei Bernevig,et al.  Fractional Chern Insulator , 2011, 1105.4867.

[27]  Yong Xu,et al.  Intrinsic magnetic topological insulator MnBi 2 Te 4 , 2020 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[30]  M. Gilbert,et al.  Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators , 2012, 1207.5767.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  E. Chulkov,et al.  Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure , 2019, Journal of Alloys and Compounds.

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  M. Franz,et al.  Surface magnetic ordering in topological insulators with bulk magnetic dopants , 2012, 1202.1850.

[35]  M. Vergniory,et al.  Higher-Order Topology in Bismuth , 2018, Nature Physics.

[36]  Cheol-hee Park,et al.  Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4 , 2013 .

[37]  Zhe Sun,et al.  Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes , 2019, Nature Communications.

[38]  Timur K. Kim,et al.  Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001) , 2019, Physical Review B.

[39]  A. Arnau,et al.  Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi_{2}Te_{4} Films. , 2018, Physical review letters.

[40]  Baigeng Wang,et al.  Searching the Mn(Sb,Bi)$_{2}$Te$_{4}$ family of materials for the ideal intrinsic magnetic topological insulator , 2019 .

[41]  Joel E. Moore,et al.  Antiferromagnetic topological insulators , 2010, 1004.1403.

[42]  A. Bostwick,et al.  Massive Dirac Fermion at the Surface of the van der Waals Antiferromagnet MnBi$_2$Te$_4$ , 2019, 1903.11826.

[43]  Xiao-Liang Qi,et al.  Magnetic impurities on the surface of a topological insulator. , 2008, Physical review letters.

[44]  Kang L. Wang,et al.  Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. , 2014, Physical review letters.

[45]  Y. Aiura,et al.  Development of laser-based scanning µ-ARPES system with ultimate energy and momentum resolutions. , 2017, Ultramicroscopy.

[46]  Dong Qian,et al.  Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators , 2013, Proceedings of the National Academy of Sciences.

[47]  Chaoxing Liu,et al.  Topological magnetic crystalline insulators and corepresentation theory , 2014, 1401.6922.

[48]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Qinghua Zhang,et al.  Experimental Realization of an Intrinsic Magnetic Topological Insulator , 2018, Chinese Physics Letters.

[51]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[52]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[53]  S. Okamoto,et al.  Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4 , 2019, Physical Review B.

[54]  Yong Xu,et al.  Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator , 2019, Nature Materials.

[55]  P. Alam ‘K’ , 2021, Composites Engineering.

[56]  Nitin Samarth,et al.  Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator , 2012, Nature Physics.

[57]  Yu-Jun Zhao,et al.  Rational Design Principles of the Quantum Anomalous Hall Effect in Superlatticelike Magnetic Topological Insulators. , 2019, Physical review letters.

[58]  Yong Xu,et al.  High-Chern-number and high-temperature quantum Hall effect without Landau levels , 2019, National science review.

[59]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[60]  C. Chen,et al.  Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[61]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[62]  Xianhui Chen,et al.  Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[63]  T. Oguchi,et al.  One-dimensional edge states with giant spin splitting in a bismuth thin film. , 2015, Physical review letters.

[64]  W. Wooster,et al.  Crystal structure of , 2005 .

[65]  Z. K. Liu,et al.  Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator , 2010, Science.

[66]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[67]  Jiaqiang Yan,et al.  Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.