Accurate discretization for singular perturbations: the one-dimensional case
暂无分享,去创建一个
T. A. Manteuffel | Stephen F. McCormick | T. F. Russell | Thomas F. Russell | T. Manteuffel | S. McCormick | Xiaochuan Hu | Xiaochuan Hu | T. Russell
[1] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[2] L. F. Shampine,et al. Applications of the Maximum Principle to Singular Perturbation Problems. , 1973 .
[3] Alan E. Berger,et al. An analysis of a uniformly accurate difference method for a singular perturbation problem , 1981 .
[4] A. Il'in. Differencing scheme for a differential equation with a small parameter affecting the highest derivative , 1969 .
[5] Singularly perturbed finite element methods , 1984 .
[6] William G. Gray,et al. Eulerian-Lagrangian localized adjoint methods with variable coefficients in multiple dimensions. , 1990 .
[7] Martin Stynes,et al. A uniformly accurate finite-element method for a singularly perturbed one-dimensional reaction-diffusion , 1986 .
[8] E. Gartland. An analysis of a uniformly convergent finite difference/finite element scheme for a model singular-perturbation problem , 1988 .
[9] Martin Stynes,et al. A finite element method for a singularly perturbed boundary value problem , 1986 .
[10] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[11] M. Stynes,et al. A uniform finite element method for a conservative singularly perturbed problem , 1987 .
[12] T. F. Russell,et al. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .