Vector-valued quadratic forms in control theory
暂无分享,去创建一个
[1] W. Sluis. A necessary condition for dynamic feedback linearization , 1993 .
[2] Victor G. Kac,et al. Root systems, representations of quivers and invariant theory , 1983 .
[3] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[4] Francesco Bullo,et al. Constructive controllability algorithms for motion planning and optimization , 2003, IEEE Trans. Autom. Control..
[5] Andrei A. Agrachev,et al. Abnormal sub-riemannian geodesics : Morse index and rigidity , 1996 .
[6] P. Brunovský. On optimal stabilization of nonlinear systems , 1967 .
[7] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[8] J. Basto-Gonçalves,et al. Second-order conditions for local controllability , 1998 .
[9] Andrei A. Agrachev,et al. Quadratic mappings in geometric control theory , 1990 .
[10] R. V. Gamkrelidze,et al. Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets , 1991 .
[11] A. Agrachev. Topology of quadratic maps and hessians of smooth maps , 1990 .
[12] Lloyd L. Dines. On linear combinations of quadratic forms , 1943 .
[13] A. D. Lewis,et al. Geometric local controllability: second-order conditions , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[14] R. Hämäläinen,et al. On the nonlinear regulator problem , 1975 .
[15] E. G. Al'brekht. On the optimal stabilization of nonlinear systems , 1961 .