Nanosilicon‐Coated Graphene Granules as Anodes for Li‐Ion Batteries

IO N Increased concern regarding environmental pollution from combustion power sources combined with the shortage of oil reserves and the growing demand for portable electronics and powered devices has generated considerable research activity to develop Li-ion batteries with greatly enhanced energy density. [ 1 ] Historically, the Li-ion anode has been composed of graphitic carbon. At full lithiation, graphite can intercalate one Li atom per six carbon atoms (LiC 6 ) for a theoretical capacity of 372 mAh · g − 1 . [ 2 ]

[1]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[2]  Rajeswari Chandrasekaran,et al.  Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature , 2010 .

[3]  Stephen Jesse,et al.  Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. , 2010, Nano letters.

[4]  Robert Kostecki,et al.  The interaction of Li+ with single-layer and few-layer graphene. , 2010, Nano letters.

[5]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[6]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[7]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[8]  Shi Xue Dou,et al.  Enhanced reversible lithium storage in a nanosize silicon/graphene composite , 2010 .

[9]  Bei Wang,et al.  Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries , 2009 .

[10]  L. Zhi,et al.  Graphene-based electrode materials for rechargeable lithium batteries , 2009 .

[11]  Haijiao Zhang,et al.  Li Storage Properties of Disordered Graphene Nanosheets , 2009 .

[12]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[13]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[14]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[15]  Y. Zhang,et al.  Pyrolytic carbon-coated silicon/Carbon Nanotube composites: promising application for Li-ion batteries , 2008 .

[16]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[17]  M. Armand,et al.  Building better batteries , 2008, Nature.

[18]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[19]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[20]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[21]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[22]  I. Barsukov,et al.  Lithium-ion batteries based on carbon-silicon-graphite composite anodes , 2007 .

[23]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[24]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[25]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[26]  Feng Li,et al.  Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries , 2006 .

[27]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[28]  T. Takamura,et al.  Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode , 2005 .

[29]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[30]  G. Cao,et al.  Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells , 2004 .

[31]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[32]  Nikolay Dimov,et al.  Mixed silicon–graphite composites as anode material for lithium ion batteries: Influence of preparation conditions on the properties of the material , 2004 .

[33]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[34]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[35]  F. E. Little,et al.  Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures , 2004 .

[36]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[37]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[39]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[40]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[41]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[42]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[43]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .