Negative Poisson’s ratios in metal nanoplates

The Poisson's ratio is a fundamental measure of the elastic-deformation behaviour of materials. Although negative Poisson's ratios are theoretically possible, they were believed to be rare in nature. In particular, while some studies have focused on finding or producing materials with a negative Poisson's ratio in bulk form, there has been no such study for nanoscale materials. Here we provide numerical and theoretical evidence that negative Poisson's ratios are found in several nanoscale metal plates under finite strains. Furthermore, under the same conditions of crystal orientation and loading direction, materials with a positive Poisson's ratio in bulk form can display a negative Poisson's ratio when the material's thickness approaches the nanometer scale. We show that this behaviour originates from a unique surface effect that induces a finite compressive stress inside the nanoplates, and from a phase transformation that causes the Poisson's ratio to depend strongly on the amount of stretch.

[1]  Peter V Liddicoat,et al.  Nanostructural hierarchy increases the strength of aluminium alloys. , 2010, Nature communications.

[2]  Hu,et al.  Poisson's ratio in polymer gels near the phase-transition point. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  G. Milton Composite materials with poisson's ratios close to — 1 , 1992 .

[4]  M. Rovati Directions of auxeticity for monoclinic crystals , 2004 .

[5]  Roderic S. Lakes,et al.  Analytical parametric analysis of the contact problem of human buttocks and negative Poisson's ratio foam cushions , 2002 .

[6]  F. Milstein,et al.  Existence of a negative Poisson ratio in fcc crystals , 1979 .

[7]  S. Hirotsu,et al.  Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels , 1991 .

[8]  R. Gordon,et al.  Atomic layer deposition of transition metals , 2003, Nature materials.

[9]  D. Schlitt Thermodynamics of the curvature of the H/subc//sub 2/-vs-T boundary in anisotropic superconductors , 1976 .

[10]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[11]  S. Hirotsu,et al.  Elastic anomaly near the critical point of volume phase transition in polymer gels , 1990 .

[12]  D. Heyes,et al.  Auxeticity of cubic materials under pressure , 2011 .

[13]  Michael Hayes,et al.  Poisson's Ratio for Orthorhombic Materials , 1998 .

[14]  R. Lakes,et al.  Negative Poisson's ratio polyethylene foams , 2001 .

[15]  D. Stone,et al.  Softening of bulk modulus and negative Poisson ratio in barium titanate ceramic near the Curie point , 2010 .

[16]  Mei Zhang,et al.  Sign Change of Poisson's Ratio for Carbon Nanotube Sheets , 2008, Science.

[17]  K. Wojciechowski Non-chiral, molecular model of negative Poisson ratio in two dimensions , 2003 .

[18]  U. Schärer,et al.  Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped SmS , 1998 .

[19]  Anisotropic properties of mechanical characteristics and auxeticity of cubic crystalline media , 2006, cond-mat/0607232.

[20]  M. Iliev,et al.  The Poisson Ratio in CoFe2O4 Spinel Thin Films , 2012 .

[21]  O. Kraft,et al.  Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. , 2009, Nano letters.

[22]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[23]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[24]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[25]  Jianmin Qu,et al.  Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films , 2005 .

[26]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[27]  Cai,et al.  Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. , 1996, Physical review. B, Condensed matter.

[28]  R. Hill,et al.  Principles of stability analysis of ideal crystals , 1977 .

[29]  James B. Adams,et al.  Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy , 2004 .

[30]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[31]  Fan Song,et al.  Effect of a negative Poisson ratio in the tension of ceramics. , 2008, Physical review letters.

[32]  K. Wojciechowski,et al.  Two-dimensional isotropic system with a negative poisson ratio , 1989 .

[33]  Chih-Kang Shih,et al.  Superconductivity at the Two-Dimensional Limit , 2009, Science.

[34]  Baughman,et al.  Negative Poisson's ratios for extreme states of matter , 2000, Science.

[35]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[36]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[37]  U. Schärer,et al.  Negative elastic constants in intermediate valent SmxLa1−xS , 1995 .

[38]  H. E. Fang,et al.  Theoretical bcc⇆fcc Transitions in Metals via Bifurcations under Uniaxial Load , 1995 .

[39]  Wojciechowski,et al.  Negative Poisson ratio in a two-dimensional "isotropic" solid. , 1989, Physical review. A, General physics.

[40]  F. Milstein,et al.  Theoretical fcc-->bcc Transition under [100] Tensile Loading , 1980 .

[41]  A. C. Brańka,et al.  Auxeticity of cubic materials , 2009 .

[42]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[43]  S. Pii ON THE NEGATIVE POISSON RATIO IN MONOCRYSTALLINE ZINC , 1999 .

[44]  R. Lakes,et al.  Design of a fastener based on negative Poisson's ratio foam , 1991 .

[45]  Simon Ameer-Beg,et al.  An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity or Defouling Properties , 2000 .

[46]  Kogure,et al.  Mechanism for negative poisson ratios over the alpha- beta transition of cristobalite, SiO2: A molecular-dynamics study , 2000, Physical review letters.

[47]  Andrew N. Norris,et al.  Poisson's ratio in cubic materials , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  R. Hill On the elasticity and stability of perfect crystals at finite strain , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  R. S. Lakes,et al.  Negative Poisson's ratio foam as seat cushion material , 2000 .

[50]  L. Wheeler,et al.  Auxeticity of Calcite and Aragonite polymorphs of CaCO3 and crystals of similar structure , 2008 .

[51]  K. Wojciechowski,et al.  Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .

[52]  D. W. Pashley A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  Zoe A. D. Lethbridge,et al.  Elastic anisotropy and extreme Poisson's ratios in single crystals , 2010 .

[54]  Joseph N. Grima,et al.  Do Zeolites Have Negative Poisson's Ratios? , 2000 .

[55]  James R. Chelikowsky,et al.  Negative Poisson ratios in crystalline SiO2 from first-principles calculations , 1992, Nature.

[56]  Y. Ishibashi,et al.  A Microscopic Model of a Negative Poisson's Ratio in Some Crystals , 2000 .

[57]  F. Scarpa,et al.  Auxetic Materials for Bioprostheses , 2008 .

[58]  D. Maroudas,et al.  Atomic pattern formation at the onset of stress-induced elastic instability: Fracture versus phase change , 2004 .

[59]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[60]  Michael A. Carpenter,et al.  Grain size dependence of elastic anomalies accompanying the α–β phase transition in polycrystalline quartz , 2008 .

[61]  M. Rovati On the negative Poisson’s ratio of an orthorhombic alloy , 2003 .

[62]  Graeme Ackland,et al.  Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential , 1997 .

[63]  Ken Gall,et al.  Surface-stress-induced phase transformation in metal nanowires , 2003, Nature materials.

[64]  F. Scarpa,et al.  Auxetic materials for bioprostheses [In the Spotlight] , 2008, IEEE Signal Processing Magazine.

[65]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .