Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions

This study presents the recent improvements of the Meteorological Radiation Model (MRM v6) against previous model versions for more accurate estimates of the solar radiation components, i.e. global, diffuse and direct. The MRM v6 follows a different approach for the simulation of the atmospheric conditions by selecting the most appropriate aerosol model (desert, urban, maritime or continental), and usage of look-up tables for the spectral variation of the aerosol optical depth (AOD) and single scattering albedo (SSA). Furthermore, the MRM v6 uses hourly data of sunshine duration in order to achieve better simulations under cloudy skies. The results show that the MRM v6 improves the estimates of the measured global, diffuse and direct solar irradiances at Athens, Greece since the Root Mean Square Error (RMSE) becomes 13.7%, 40.8% and 24.2%, respectively, against 18.0%, 44.5% and 34.1% for the MRM v5. A decrease is also found in Mean Bias Error (MBE), especially for the diffuse (from 26.2% to 19.5%) and direct (from −9.0% to −2.4%) irradiances, indicating that the inclusion of the aerosol properties in MRM v6 significantly improves the estimations. The MRM simulations are very satisfactory on monthly basis indicating that the model is suitable for solar energy applications.

[1]  Martin Wild,et al.  Global dimming and brightening: A review , 2009 .

[2]  G. G. Palancar,et al.  Effects of stratocumulus, cumulus, and cirrus clouds on the UV-B diffuse to global ratio: Experimental and modeling results , 2012 .

[3]  P. S. Brown,et al.  Numerical Computations of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity , 1974 .

[4]  María P. Utrillas,et al.  A comparative study of SPCTRAL2 and SMARTS2 parameterised models based on spectral irradiance measurements at Valencia, Spain , 1998 .

[5]  S. Ramachandran,et al.  The mixing state of aerosols over the Indo‐Gangetic Plain and its impact on radiative forcing , 2013 .

[6]  Atsumu Ohmura,et al.  Observed decadal variations in surface solar radiation and their causes , 2009 .

[7]  J. Dave,et al.  Effect of Aerosols on the Transfer of Solar Energy Through Realistic Model Atmospheres. Part I: Non-Absorbing Aerosols , 1973 .

[8]  B. E. Psiloglou,et al.  Comparison between measurements and models for daily solar irradiation on tilted surfaces in Athens, Greece , 1997 .

[9]  L. Alados-Arboledas,et al.  Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance , 2013 .

[10]  T. Giambelluca,et al.  Use of a clear-day solar radiation model to homogenize solar radiation measurements in Hawai‘i , 2013 .

[11]  B. E. Psiloglou,et al.  Performance of the meteorological radiation model during the solar eclipse of 29 March 2006 , 2007 .

[12]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[13]  L. Alados-Arboledas,et al.  Global and diffuse shortwave irradiance during a strong desert dust episode at Granada (Spain) , 2012 .

[14]  C. Gueymard Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment , 2003 .

[15]  T. Takemura,et al.  Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations , 2011 .

[16]  Daniela Meloni,et al.  Aerosol optical properties at Lampedusa ( Central Mediterranean ) . 2 . Determination of single scattering albedo at two wavelengths for different aerosol types , 2017 .

[17]  J. Barnard,et al.  A Simple Empirical Equation to Calculate Cloud Optical Thickness Using Shortwave Broadband Measurements , 2004 .

[18]  H. Kambezidis,et al.  The choice of the most appropriate aerosol model in a radiative transfer code , 2008 .

[19]  Christian A. Gueymard,et al.  Interdisciplinary applications of a versatile spectral solar irradiance model: A review , 2004 .

[20]  I. Vardavas,et al.  Cloud effects on the solar and thermal radiation budgets of the Mediterranean basin , 2015 .

[21]  Josep Calbó,et al.  Empirical studies of cloud effects on UV radiation: A review , 2005 .

[22]  Christian A. Gueymard,et al.  Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data , 1993 .

[23]  B. Psiloglou,et al.  The Meteorological Radiation Model (MRM): Advancements and Applications , 2008 .

[24]  K. Araki,et al.  Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan , 2013 .

[25]  B. Psiloglou,et al.  Model for Estimating Atmospheric Ozone Content over Northern Europe for Use in Solar Radiation Algorithms , 2013 .

[26]  Chris T. Kiranoudis,et al.  Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters , 2016 .

[27]  Roberto Román,et al.  Turbidity coefficients from normal direct solar irradiance in Central Spain , 2014 .

[28]  L. Ramírez,et al.  Angstrom turbidity and ozone column estimations from spectral solar irradiance in a semi-desertic environment in Spain , 2009 .

[29]  Thomas W. Giambelluca,et al.  Modeling clear-sky solar radiation across a range of elevations in Hawai‘i: Comparing the use of input parameters at different temporal resolutions , 2012 .

[30]  Jesús Polo,et al.  Solar global horizontal and direct normal irradiation maps in Spain derived from geostationary satellites , 2015 .

[31]  Peter R. J. North,et al.  Control of atmospheric particles on diffuse radiation and terrestrial plant productivity , 2012 .

[32]  Jacques Pelon,et al.  Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa , 2010 .

[33]  A. Alcantara,et al.  The influence of clouds on surface UV erythemal irradiance , 2003 .

[34]  H. Kambezidis,et al.  Solar position and right ascension , 1993 .

[35]  Nels S. Laulainen,et al.  Global Dimming and Brightening Versus Atmospheric Column Transparency, Europe 1906-2007 , 2009 .

[36]  R. L. Hulstrom,et al.  Direct insolation models , 1980 .

[37]  Liang Zhao,et al.  Global solar radiation estimation with sunshine duration in Tibet, China , 2011 .

[38]  A. Bais,et al.  Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements , 2005 .

[39]  G. Gobbi,et al.  An important fingerprint of wildfires on the European aerosol load , 2011 .

[40]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[41]  B. J. Wilkinson An improved FORTRAN program for the rapid calculation of the solar position , 1981 .

[42]  B. Psiloglou,et al.  Measurements and models for total solar irradiance on inclined surface in Athens, Greece , 1994 .

[43]  Lucas Alados-Arboledas,et al.  Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain) , 2015 .

[44]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[45]  Kamaruzzaman Sopian,et al.  Issues concerning atmospheric turbidity indices , 2012 .

[46]  H. D. Kambezidis,et al.  Solar position and atmospheric refraction , 1990 .

[47]  Llanos Mora-López,et al.  Modelling the distribution of solar spectral irradiance using data mining techniques , 2014 .

[48]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[49]  Thomas K. Van Heuklon Estimating atmospheric ozone for solar radiation models , 1979 .

[50]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[51]  C. Gueymard Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models , 2012 .

[52]  Langley R. Muir,et al.  Comments on “The effect of atmospheric refraction in the solar azimuth” , 1983 .

[53]  M. P. Utrillas,et al.  Relationship between the effective cloud optical depth and different atmospheric transmission factors , 2015 .

[54]  D. Djafer,et al.  Estimation of atmospheric turbidity over Ghardaïa city , 2013 .

[55]  Hans W. Linderholm,et al.  Observation and calculation of the solar radiation on the Tibetan Plateau , 2012 .

[56]  Nobuyuki Tamai,et al.  A hybrid model for estimating global solar radiation , 2001 .

[57]  Guang Yang,et al.  Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting , 2015 .

[58]  J. M. Vindel,et al.  Correcting satellite derived DNI with systematic and seasonal deviations: Application to India , 2015 .

[59]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[60]  Panagiotis T. Nastos,et al.  Characterising the long‐range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005 , 2012 .

[61]  Argimiro de Miguel Castrillo,et al.  Empirical models of UV total radiation and cloud effect study , 2009 .

[62]  Maria Wall,et al.  The Solar Map as a Knowledge Base for Solar Energy Use , 2014 .

[63]  Dimitris G. Kaskaoutis,et al.  Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data , 2007 .

[64]  Martin Wild,et al.  Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming,” and solar “brightening” , 2009 .

[65]  Thomas F. Eck,et al.  A critical examination of spatial biases between MODIS and MISR aerosol products – application for potential AERONET deployment , 2011 .

[66]  H. Kambezidis,et al.  The role of aerosol models of the SMARTS code in predicting the spectral direct-beam irradiance in an urban area , 2008 .

[67]  R. Walraven Calculating the position of the sun , 1978 .

[68]  Alkiviadis F. Bais,et al.  Solar energy prediction and verification using operational model forecasts and ground-based solar measurements , 2015 .

[69]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[70]  D. N. Asimakopoulos,et al.  Atmospheric Broadband Model for Computation of Solar Radiation at the Earth’s Surface. Application to Mediterranean Climate , 2000 .

[71]  Lucas Alados-Arboledas,et al.  A Simple All Weather Model to Estimate Ultraviolet Solar Radiation (290–385 nm) , 1999 .

[72]  Ramesh P. Singh,et al.  Effects of crop residue burning on aerosol properties, plume characteristics, and long‐range transport over northern India , 2014 .

[73]  J. Hansen,et al.  A parameterization for the absorption of solar radiation in the earth's atmosphere , 1974 .

[74]  C. Long,et al.  From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth's Surface , 2005, Science.