A review of the electrochemical performance of alloy anodes for lithium-ion batteries

[1]  Heechul Jung,et al.  Improvement of electrochemical behavior of Sn2Fe/C nanocomposite anode with Al2O3 addition for lithium-ion batteries , 2010 .

[2]  Jung-Ki Park,et al.  Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode , 2010 .

[3]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[4]  Zongping Shao,et al.  Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis , 2010 .

[5]  A. Hirano,et al.  A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries , 2010 .

[6]  J. Dahn,et al.  An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn30Co30C40 , 2010 .

[7]  J. Dahn,et al.  Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries , 2010 .

[8]  Cao Cuong Nguyen,et al.  Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries , 2010 .

[9]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[10]  B. Scrosati,et al.  An advanced lithium-ion battery based on a nanostructured Sn-C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte , 2010 .

[11]  Cheol‐Min Park,et al.  Electrochemical Characteristics of TiSb2 and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries , 2010 .

[12]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[13]  J. Dahn,et al.  Comparison of Mechanically Milled and Sputter Deposited Tin–Cobalt–Carbon Alloys Using Small Angle Neutron Scattering , 2009 .

[14]  Cheol‐Min Park,et al.  A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries , 2009 .

[15]  M. Qu,et al.  Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries , 2009 .

[16]  A. Manthiram,et al.  Sb-MOx-C (M = Al, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries , 2009 .

[17]  G. Wegner,et al.  Improvement of cyclability of Si as anode for Li-ion batteries , 2009 .

[18]  Qi Li,et al.  Carbon-coated copper–tin alloy anode material for lithium ion batteries , 2009 .

[19]  M. Thackeray,et al.  High-Capacity, Microporous Cu6Sn5 – Sn Anodes for Li-Ion Batteries , 2009 .

[20]  Gang Wang,et al.  Electrochemical performance of La–Co–Sn alloys as anode materials for Li-ion batteries , 2009 .

[21]  N. Imanishi,et al.  Highly reversible carbon–nano-silicon composite anodes for lithium rechargeable batteries , 2009 .

[22]  K. Kanamura,et al.  Three-dimensionally ordered macroporous Ni–Sn anode for lithium batteries , 2009 .

[23]  C. Villevieille,et al.  A new ternary Li4FeSb2 structure formed upon discharge of the FeSb2/Li cell , 2009 .

[24]  Ling Huang,et al.  Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes , 2009 .

[25]  Z. Wen,et al.  Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating , 2009 .

[26]  Xianlong Liu,et al.  High performance silicon carbon composite anode materials for lithium ion batteries , 2009 .

[27]  Z. Wen,et al.  Preparation and characterization of a new nanosized silicon–nickel–graphite composite as anode material for lithium ion batteries , 2009 .

[28]  Yang‐Kook Sun,et al.  Electrochemical characterization of Ti–Si and Ti–Si–Al alloy anodes for Li-ion batteries produced by mechanical ball milling , 2009 .

[29]  Qiang Ru,et al.  Dead lithium phase investigation of Sn-Zn alloy as anode materials for lithium ion battery , 2009 .

[30]  C. Yoon,et al.  Electrochemical behaviour of Heusler alloy Co2MnSi for secondary lithium batteries , 2009 .

[31]  Ling Huang,et al.  One-step electrodeposition synthesis and electrochemical properties of Cu6Sn5 alloy anodes for lithium-ion batteries , 2009 .

[32]  Xiaoxu Huang,et al.  Revealing the Maximum Strength in Nanotwinned Copper , 2009, Science.

[33]  Libao Chen,et al.  An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries , 2009 .

[34]  Ling Huang,et al.  Electrodeposition and electrochemical properties of novel ternary tin–cobalt–phosphorus alloy electrodes for lithium-ion batteries , 2009 .

[35]  I. Profatilova,et al.  The effect of ethylene carbonate on the cycling performance of a Si electrode , 2008 .

[36]  Hung-Chun Wu,et al.  Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode , 2008 .

[37]  Tao Wang,et al.  Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries , 2008 .

[38]  Mo-hua Yang,et al.  Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries , 2008 .

[39]  Xiangming He,et al.  A Si–SnSb/pyrolytic PAN composite anode for lithium-ion batteries , 2008 .

[40]  Xiangming He,et al.  A new process of preparing composite microstructure anode for lithium ion batteries , 2008 .

[41]  Z. Wen,et al.  Preparation and electrochemical characterization of tin/graphite/silver composite as anode materials for lithium-ion batteries , 2008 .

[42]  H. X. Yang,et al.  Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries , 2008 .

[43]  J. Dahn,et al.  Study of Sn30 ( Co1 − x Fe x ) 30C40 Alloy Negative Electrode Materials Prepared by Mechanical Attriting , 2008 .

[44]  Hailei Zhao,et al.  Electrochemical characterization of micro-sized Sb/SnSb composite anode , 2008 .

[45]  M. Nakayama,et al.  First-Principles Study on Phase Stability in Li x CuSb with Heusler-type Structure , 2008 .

[46]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[47]  N. Choi,et al.  Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder , 2008 .

[48]  Yongying Yang,et al.  Nanostructured Si/TiC composite anode for Li-ion batteries , 2008 .

[49]  Yo Kobayashi,et al.  Dynamics of Phase Transition in Li–Cu–Sb Anode Material for Rechargeable Lithium Ion Battery , 2008 .

[50]  Yong Yang,et al.  The study of Mg2Si/carbon composites as anode materials for lithium ion batteries , 2008 .

[51]  Xiaoping Song,et al.  Nano-sized SnSbCux alloy anodes prepared by co-precipitation for Li-ion batteries , 2008 .

[52]  S. Moon,et al.  Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery , 2008 .

[53]  M. Nakayama,et al.  Anode Material of CoMnSb for Rechargeable Li-Ion Battery , 2008 .

[54]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[55]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[56]  Seokgwang Doo,et al.  Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode , 2007 .

[57]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[58]  NiSb2 as negative electrode for Li-ion batteries: An original conversion reaction , 2007 .

[59]  Cheol‐Min Park,et al.  High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries , 2007 .

[60]  B. Scrosati,et al.  An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries , 2007 .

[61]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[62]  M. Thackeray,et al.  Substituted M x Cu6 − x Sn5 Compounds (M = Fe , Co, Ni, Zn) Designing Multicomponent Intermetallic Electrodes for Lithium Batteries , 2007 .

[63]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[64]  Hailei Zhao,et al.  Spherical Sn–Ni–C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries , 2007 .

[65]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[66]  K. Edström,et al.  Influence of electrode microstructure on the reactivity of Cu2Sb with lithium , 2007 .

[67]  Yongyao Xia,et al.  NixCu6−xSn5 alloys as negative electrode materials for rechargeable lithium batteries , 2007 .

[68]  M. Wakihara,et al.  Construction of the Ternary Phase Diagram for the Li−Cu−Sb System as the Anode Material for a Lithium Ion Battery , 2007 .

[69]  T. Gustafsson,et al.  Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries , 2007 .

[70]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[71]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[72]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[73]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[74]  U. Varadaraju,et al.  NbSb2 as an anode material for Li-ion batteries , 2006 .

[75]  Cheol‐Min Park,et al.  Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries , 2006 .

[76]  T. Takamura,et al.  High capacity and long cycle life silicon anode for Li-ion battery , 2006 .

[77]  Jing-ying Xie,et al.  Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries , 2006 .

[78]  J. Dahn,et al.  Simple Model for the Capacity of Amorphous Silicon-Aluminum-Transition Metal Negative Electrode Materials , 2006 .

[79]  Chunjoong Kim,et al.  Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries , 2006 .

[80]  J. Dahn,et al.  Al-M ( M = Cr , Fe , Mn , Ni ) Thin-Film Negative Electrode Materials , 2006 .

[81]  Christopher S. Johnson,et al.  Solution route synthesis of InSb, Cu6Sn5 and Cu2Sb electrodes for lithium batteries , 2006 .

[82]  N. Takami,et al.  Nano Si Cluster- SiO x ‐C Composite Material as High-Capacity Anode Material for Rechargeable Lithium Batteries , 2006 .

[83]  J. Dahn,et al.  A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i , 2006 .

[84]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[85]  Seung M. Oh,et al.  Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries , 2005 .

[86]  S. Dou,et al.  Study of silicon/polypyrrole composite as anode materials for Li-ion batteries , 2005 .

[87]  M. Yoshio,et al.  Electrochemical behaviors of silicon based anode material , 2005 .

[88]  Sung-Man Lee,et al.  Silver alloying effect on the electrochemical behavior of Si-Zr thin film anodes , 2005 .

[89]  T. Osaka,et al.  Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling , 2005 .

[90]  J. Dahn,et al.  Combinatorial Electrodeposition of Ternary Cu–Sn–Zn Alloys , 2005 .

[91]  X. Zhao,et al.  Electrochemical Li-uptake properties of nanosized NiSb2 prepared by solvothermal route , 2005 .

[92]  Jae‐Hun Kim,et al.  Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries , 2005 .

[93]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[94]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[95]  Young-Lae Kim,et al.  Carbon-coated Ni20Si80 alloy–graphite composite as an anode material for lithium-ion batteries , 2005 .

[96]  Michael D. Fleischauer,et al.  Combinatorial Investigations of Si-M ( M = Cr + Ni , Fe , Mn ) Thin Film Negative Electrode Materials , 2005 .

[97]  Mo-hua Yang,et al.  Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder , 2005 .

[98]  N. Imanishi,et al.  Electrochemical characterization of a novel Si–graphite–Li2.6Co0.4N composite as anode material for lithium secondary batteries , 2005 .

[99]  Mo-hua Yang,et al.  Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive , 2005 .

[100]  T. Sakai,et al.  Structural Analysis by Synchrotron XRD of a Ag52Sn48 Nanocomposite Electrode for Advanced Li-Ion Batteries , 2004 .

[101]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[102]  Zonghai Chen,et al.  Design of Amorphous Alloy Electrodes for Li-Ion Batteries A Big Challenge , 2004 .

[103]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[104]  P. Kumta,et al.  High capacity Si/C nanocomposite anodes for Li-ion batteries , 2004 .

[105]  J. Dahn,et al.  Combinatorial Investigations of the Si-Al-Mn System for Li-Ion Battery Applications , 2004 .

[106]  Huakun Liu,et al.  Characterization of Nanocrystalline Si-MCMB Composite Anode Materials , 2004 .

[107]  M. Wagner,et al.  Electrolyte Decomposition Reactions on Tin- and Graphite-Based Anodes are Different , 2004 .

[108]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[109]  Young-Ugk Kim,et al.  Reaction Mechanism of Tin Phosphide Anode by Mechanochemical Method for Lithium Secondary Batteries , 2004 .

[110]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[111]  T. Osaka,et al.  Optimized Sn/SnSb lithium storage materials , 2004 .

[112]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[113]  H. Lee,et al.  Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries , 2004 .

[114]  H. Moon,et al.  Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .

[115]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[116]  E. Cairns,et al.  Mechanism of Lithium Insertion into Magnesium Silicide , 2004 .

[117]  G. Cao,et al.  Electrochemical properties of CoFe3Sb12 as potential anode material for lithium-ion batteries , 2004, Journal of Zhejiang University. Science.

[118]  M. Wagner,et al.  Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb , 2004 .

[119]  Zonghai Chen,et al.  Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers , 2003 .

[120]  J. Dahn,et al.  The amorphous range in sputtered Si–Al–Sn films , 2003 .

[121]  J. Wolfenstine CaSi2 as an anode for lithium-ion batteries , 2003 .

[122]  H. Sakaguchi,et al.  Anode behaviors of magnesium–antimony intermetallic compound for lithium secondary battery , 2003 .

[123]  J. Thorson,et al.  Resistance to Enediyne Antitumor Antibiotics by CalC Self-Sacrifice , 2003, Science.

[124]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[125]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[126]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[127]  P. Kumta,et al.  Nanostructured Si / TiB2 Composite Anodes for Li-Ion Batteries , 2003 .

[128]  S. Yoshida,et al.  New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries , 2003 .

[129]  H. Lee,et al.  Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries , 2003 .

[130]  Sung-Man Lee,et al.  Sn–Zr–Ag alloy thin-film anodes , 2003 .

[131]  J. Tarascon,et al.  On the Electrochemical Reactivity Mechanism of CoSb3 vs. Lithium , 2003 .

[132]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .

[133]  K. Edström,et al.  Alternative anode materials for lithium-ion batteries: a study of Ag3Sb , 2003 .

[134]  H. Sakaguchi,et al.  Ce–Sn intermetallic compounds as new anode materials for rechargeable lithium batteries , 2003 .

[135]  T. Takamura,et al.  Li insertion/extraction reaction at a Si film evaporated on a Ni foil , 2003 .

[136]  Min Park,et al.  Amorphous silicon anode for lithium-ion rechargeable batteries , 2003 .

[137]  J. Dahn,et al.  The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM , 2003 .

[138]  Z. Wen,et al.  High capacity silicon/carbon composite anode materials for lithium ion batteries , 2003 .

[139]  J. Dahn,et al.  The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys , 2003 .

[140]  Christopher S. Johnson,et al.  Structural considerations of intermetallic electrodes for lithium batteries , 2003 .

[141]  K. Striebel,et al.  Electrochemical Studies of Nanoncrystalline Mg2Si Thin Film Electrodes Prepared by Pulsed Laser Deposition , 2003 .

[142]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[143]  H. Lee,et al.  Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries , 2002 .

[144]  Michael M. Thackeray,et al.  Lithium reactions with intermetallic-compound electrodes , 2002 .

[145]  Christopher S. Johnson,et al.  In situ x-ray absorption studies of electrochemically induced phase changes in lithium-doped InSb , 2002 .

[146]  W. Behl,et al.  Nano-scale Cu6Sn5 anodes , 2002 .

[147]  J. Jumas,et al.  X-ray Diffraction, 7Li MAS NMR Spectroscopy, and 119Sn Mössbauer Spectroscopy Study of SnSb-Based Electrode Materials , 2002 .

[148]  Xuejie Huang,et al.  Nano-alloy anode for lithium ion batteries , 2002 .

[149]  K. Edström,et al.  Structural Transformations in Lithiated η′-Cu6Sn5 Electrodes Probed by In Situ Mössbauer Spectroscopy and X-Ray Diffraction , 2002 .

[150]  Y. Rosenberg,et al.  Tin Alloy-Graphite Composite Anode for Lithium-Ion Batteries , 2002 .

[151]  J. Besenhard,et al.  Anodic materials for rechargeable Li-batteries , 2002 .

[152]  Hansu Kim,et al.  Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries , 2002 .

[153]  Goojin Jeong,et al.  Particulate-reinforced Al-based composite material for anode in lithium secondary batteries , 2001 .

[154]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[155]  Hansu Kim,et al.  Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries , 2001 .

[156]  Liquan Chen,et al.  Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries , 2001 .

[157]  T. Brousse,et al.  Influence of particle size and matrix in “metal” anodes for Li-ion cells , 2001 .

[158]  John T. Vaughey,et al.  Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study , 2001 .

[159]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[160]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[161]  C. Pérez-Vicente,et al.  Electrochemical reactions of polycrystalline CrSb2 in lithium batteries , 2001 .

[162]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[163]  F. E. Little,et al.  Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes , 2001 .

[164]  G. Cao,et al.  A study of Zn4Sb3 as a negative electrode for secondary lithium cells , 2001 .

[165]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[166]  J. Dahn,et al.  Reaction of Li with Grain‐Boundary Atoms in Nanostructured Compounds , 2000 .

[167]  J. Yang,et al.  Intermetallic SnSbx compounds for lithium insertion hosts , 2000 .

[168]  Christopher S. Johnson,et al.  Electrochemistry and in-situ x-ray diffraction of InSb in lithium batteries. , 2000 .

[169]  Christopher S. Johnson,et al.  Structural and mechanistic features of intermetallic materials for lithium batteries , 2000 .

[170]  Hansu Kim,et al.  The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li‐Ion Batteries , 1999 .

[171]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[172]  J. Yang,et al.  Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .

[173]  Liquan Chen,et al.  Controlled Li doping of Si nanowires by electrochemical insertion method , 1999 .

[174]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[175]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[176]  J. Besenhard,et al.  SUB-MICROCRYSTALLINE SN AND SN-SNSB POWDERS AS LITHIUM STORAGE MATERIALS FOR LITHIUM-ION BATTERIES , 1999 .

[177]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[178]  M. Thackeray,et al.  Intermetallic Insertion Electrodes with a Zinc Blende‐Type Structure for Li Batteries: A Study of Li x InSb ( 0 ≤ x ≤ 3 ) , 1999 .

[179]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[180]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[181]  J. Jumas,et al.  Electrochemical reaction of lithium with the CoSb3 skutterudite , 1999 .

[182]  Jeff Dahn,et al.  On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium , 1999 .

[183]  Liquan Chen,et al.  Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries , 1999 .

[184]  M. Thackeray,et al.  Copper-tin anodes for rechargeable lithium batteries : an example of the matrix effect in an intermetallic system. , 1998 .

[185]  J. Dahn,et al.  Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods , 1998 .

[186]  X. B. Zhang,et al.  Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling , 1998 .

[187]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[188]  J. Dahn,et al.  Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass , 1997 .

[189]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[190]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[191]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[192]  J. Tarascon,et al.  Effect of Mechanical Grinding on the Lithium Intercalation Process in Graphites and Soft Carbons , 1996 .

[193]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[194]  Jeff Dahn,et al.  Lithium Insertion in Hydrogen-Containing Carbonaceous Materials , 1996 .

[195]  Lu,et al.  Positron-lifetime study of polycrystalline Ni-P alloys with ultrafine grains. , 1991, Physical review. B, Condensed matter.

[196]  Zhu,et al.  X-ray diffraction studies of the structure of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[197]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[198]  A. Father A Substitute for Euclid , 1871, Nature.