Runge-Kutta Solutions of a Hyperbolic Conservation Law with Source Term
暂无分享,去创建一个
[1] Andrew M. Stuart,et al. On the Solution of Convection-Diffusion Boundary Value Problems Using Equidistributed Grids , 1998, SIAM J. Sci. Comput..
[2] D. Higham. Regular Runge-Kutta pairs , 1997 .
[3] Desmond J. Higham,et al. Does Error Control Suppress Spuriosity , 1997 .
[4] O. Stein. Bifurcations of hyperbolic fixed points for explicit Runge-Kutta methods , 1997 .
[5] Desmond J. Higham,et al. Nonnormality Effects in a Discretised Nonlinear Reaction-Convection-Diffusion Equation , 1996 .
[6] J. Verwer,et al. A positive finite-difference advection scheme , 1995 .
[7] H. C. Yee,et al. On the Dynamics of Some Grid Adaption Schemes , 1994 .
[8] A. R. Humphries. Spurious solutions of numerical methods for initial value problems , 1993 .
[9] H. C. Yee,et al. Numerical wave propagation in an advection equation with a nonlinear source term , 1992 .
[10] H. C. Yee,et al. On spurious asymptotic numerical solutions of explicit Runge-Kutta methods , 1992 .
[11] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[12] Arieh Iserles,et al. A unified approach to spurious solutions introduced by time discretization. Part I: basic theory , 1991 .
[13] J. M. Sanz-Serna,et al. Equilibria of Runge-Kutta methods , 1990 .
[14] Randall J. LeVeque,et al. A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .
[15] H. C. Yee,et al. A class of high resolution explicit and implicit shock-capturing methods , 1989 .
[16] A. R. Mitchell,et al. Stable periodic bifurcations of an explicit discretization of a nonlinear partial differential equation in reaction diffusion , 1988 .
[17] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[18] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[19] A. Iserles. Stability and Dynamics of Numerical Methods for Nonlinear Ordinary Differential Equations , 1990 .