On color isomorphic subdivisions

Given a graph $H$ and an integer $k\geqslant 2$, let $f_{k}(n,H)$ be the smallest number of colors $C$ such that there exists a proper edge-coloring of the complete graph $K_{n}$ with $C$ colors containing no $k$ vertex-disjoint color isomorphic copies of $H$. In this paper, we prove that $f_{2}(n,H_{t})=\Omega(n^{1+\frac{1}{2t-3}})$ where $H_{t}$ is the $1$-subdivision of the complete graph $K_{t}$. This answers a question of Conlon and Tyomkyn (arXiv: 2002.00921).

[1]  D. Conlon,et al.  On the Extremal Number of Subdivisions , 2018, International Mathematics Research Notices.

[2]  T. Jiang,et al.  Many Turán exponents via subdivisions , 2019, Comb. Probab. Comput..

[3]  Oliver Janzer,et al.  Improved Bounds for the Extremal Number of Subdivisions , 2018, Electron. J. Comb..

[4]  David Conlon,et al.  More on the Extremal Number of Subdivisions , 2021, Comb..

[5]  B. Bukh Random algebraic construction of extremal graphs , 2014, 1409.3856.

[6]  David Conlon,et al.  More on the Extremal Number of Subdivisions , 2019, Combinatorica.

[7]  Jie Ma,et al.  On Turán exponents of bipartite graphs , 2018, Comb. Probab. Comput..

[8]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[9]  David Conlon,et al.  Repeated Patterns in Proper Colorings , 2020, SIAM J. Discret. Math..

[10]  Jie Ma,et al.  Negligible obstructions and Tur\'an exponents , 2020, 2007.02975.

[11]  B. Sudakov,et al.  Turán number of bipartite graphs with no 𝐾_{𝑡,𝑡} , 2019, Proceedings of the American Mathematical Society.

[12]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[13]  Tao Jiang,et al.  Turán Numbers of Subdivided Graphs , 2012, SIAM J. Discret. Math..

[14]  Gennian Ge,et al.  Color Isomorphic Even Cycles and a Related Ramsey Problem , 2020, SIAM J. Discret. Math..

[15]  Dong Yeap Kang,et al.  On the rational Turán exponents conjecture , 2021, J. Comb. Theory, Ser. B.