Progress in Multi-Dimensional Upwind Differencing

The state of the art in genuinely multi-dimensional upwind differencing has made dramatic advances over the past three years, owing to a shift from the finite-volume approach to the flctuation approach. The basic ingredients for multi-dimensional Euler codes, i.e. wave model, conservation principle and convection scheme, are ready for integration, and the first numerical results look good. The coming years will yield many more Euler applications in two and three dimensions, further improvements in wave models and compact convection schemes, and extension of the approach to the modeling of the Navier-Stokes equations.

[1]  Philip L. Roe,et al.  Effect of a multi-dimensional flux function on the monotonicity of Euler and Navier-Stokes computations , 1991 .

[2]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[4]  Development of a grid-independent approximate Riemann solver. , 1991 .

[5]  A multi-dimensional upwind scheme for the Euler equations on structured grids , 1993 .

[6]  Philip L. Roe,et al.  A grid-independent approximate Riemann solver with applications to the Euler and Navier-Stokes equations , 1991 .

[7]  Bram van Leer,et al.  An Implementation of a Grid-Independent Upwind Scheme for the Euler Equations , 1989 .

[8]  S. F. Davis,et al.  A rotationally biased upwind difference scheme for the euler equations , 1984 .

[9]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[10]  B. Vanleer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[11]  V. Venkatakrishnan Newton solution of inviscid and viscous problems , 1988 .

[12]  Bram van Leer,et al.  A genuinely multi-dimensional upwind cell-vertex scheme for the Euler equations , 1989 .

[13]  C. Hirsch,et al.  A multidimensional cell-centered upwind algorithm based on a diagonalization of the Euler equations , 1990 .

[14]  P. Roe,et al.  An improved wave model for multidimensional upwinding of the Euler equations , 1993 .

[15]  Giuseppe Pascazio,et al.  A multi-dimensional solution adaptive multigrid solver for the Euler equations , 1993 .

[16]  H. Deconinck Beyond the Riemann Problem, Part II , 1993 .

[17]  Sukumar Chakravarthy,et al.  Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy , 1986 .

[18]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[19]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[20]  Shigeru Obayashi,et al.  Improvements and applications of a streamwise upwind algorithm , 1989 .

[21]  Philip L. Roe,et al.  The use of the Riemann problem in finite difference schemes , 1989 .

[22]  P. L. Roe,et al.  Optimum positive linear schemes for advection in two and three dimensions , 1992 .

[23]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[24]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[25]  Philip L. Roe,et al.  Progress on multidimensional upwind Euler solvers for unstructured grids , 1991 .

[26]  Bram van Leer,et al.  Use of a rotated Riemann solver for the two-dimensional Euler equations , 1993 .

[27]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[28]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[29]  P. Roe Beyond the Riemann Problem, Part I , 1993 .

[30]  W. K. Anderson,et al.  Comparison of Finite Volume Flux Vector Splittings for the Euler Equations , 1985 .

[31]  Kenneth G. Powell,et al.  An adaptively-refined Cartesian mesh solver for the Euler equations , 1991 .

[32]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[33]  Donna J. Michalek,et al.  A nearly-monotone genuinely multidimensional scheme for the Euler equations , 1992 .

[34]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[35]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[36]  Multi-dimensional schemes for scalar advection , 1991 .

[37]  Bernard Grossman,et al.  A rotated upwind scheme for the Euler equations , 1991 .

[38]  Philip L. Roe,et al.  Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics , 1986 .

[39]  Philip L. Roe,et al.  Fluctuations and signals - a framework for numerical evolution problems. , 1800 .

[40]  Rémi Abgrall,et al.  Design of an Essentially Nonoscillatory Reconstruction Procedure on Finite-Element-Type Meshes , 1991 .

[41]  A. G. Hutton,et al.  THE NUMERICAL TREATMENT OF ADVECTION: A PERFORMANCE COMPARISON OF CURRENT METHODS , 1982 .

[42]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[43]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[44]  S. Godunov,et al.  A DIFFERENCE SCHEME FOR TWO-DIMENSIONAL UNSTEADY PROBLEMS OF GAS DYNAMICS AND COMPUTATION OF FLOW WITH A DETACHED SHOCK WAVE, , 1965 .

[45]  Herman Deconinck,et al.  Convection algorithms based on a diagonalization procedure for the multidimensional Euler equations , 1987 .

[46]  C. Hirsch,et al.  Upwind algorithms based on a diagonalization of the multidimensionalEuler equations , 1989 .

[47]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[48]  Ijaz H. Parpia A planar oblique wave model for the Euler equations , 1991 .

[49]  Kenneth G. Powell,et al.  Sonic-point capturing , 1989 .