Min-max output feedback predictive control with guaranteed stability

This paper considers the output-feedback stabilization problem for nonlinear continuous time systems. Specifically we propose the combination of a min-max nonlinear model predictive control (NMPC) scheme with observers that deliver set-based state information. Provided the observer estimates are consistent and the min-max NMPC controller is designed suitably, it is show that the closed-loop is stable. In comparison to approaches based on the certainty equivalence principle, the outlined approach does not rely on inherent robustness properties which standard state-feedback NMPC might possess. Rather the min-max NMPC controller takes the state uncertainty directly into account. keywords: nonlinear model predictive control, receding horizon control, output-feedback, min-max, set-valued observer

[1]  E. Walter,et al.  Guaranteed recursive nonlinear state estimation using interval analysis , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[3]  Frank Allgöwer,et al.  Towards a Sampled-Data Theory for Nonlinear Model Predictive Control , 2003 .

[4]  B. Kouvaritakis,et al.  Observers in nonlinear model-based predictive control , 2000 .

[5]  Patrick Menold,et al.  Finite and asymptotic time state estimation for linear and nonlinear systems , 2004 .

[6]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[7]  Andrew R. Teel,et al.  Examples of zero robustness in constrained model predictive control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[9]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[10]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[11]  Johan Löfberg,et al.  TOWARDS JOINT STATE ESTIMATION AND CONTROL IN MINIMAX MPC , 2002 .

[12]  S. E. Tuna,et al.  Robust stabilization of discrete-time nonlinear systems by certainty equivalence output feedback with applications to model predictive control , 2004, Proceedings of the 2004 American Control Conference.

[13]  James B. Rawlings,et al.  Discrete-time stability with perturbations: application to model predictive control , 1997, Autom..

[14]  F. Allgöwer,et al.  OUTPUT FEEDBACK NONLINEAR PREDICTIVE CONTROL -A SEPARATION PRINCIPLE APPROACH , 2002 .

[15]  Frank Allgöwer,et al.  On output feedback nonlinear model predictive control using high gain observers for a class of systems , 2001 .

[16]  A. Garulli,et al.  Output-feedback predictive control of constrained linear systems via set-membership state estimation , 2000 .

[17]  F. Allgöwer,et al.  Output feedback stabilization of constrained systems with nonlinear predictive control , 2003 .

[18]  F. Allgower,et al.  Stability conditions for observer based output feedback stabilization with nonlinear model predictive control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[19]  S. E. Tuna,et al.  Model predictive control when a local control Lyapunov function is not available , 2003, Proceedings of the 2003 American Control Conference, 2003..

[20]  Mayuresh V. Kothare,et al.  Robust output feedback model predictive control using off-line linear matrix inequalities , 2002 .

[21]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[22]  B. Kouvaritakis,et al.  Receding horizon output feedback control for linear systems with input saturation , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[23]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[24]  J. Shamma,et al.  Approximate set-valued observers for nonlinear systems , 1997, IEEE Trans. Autom. Control..

[25]  L. Chisci,et al.  Feasibility in predictive control of constrained linear systems: the output feedback case , 2002 .

[26]  Lalo Magni,et al.  Special section technical notes and correspondence. Min-max model predictive control of nonlinear systems using discontinuous feedbacks , 2003, IEEE Trans. Autom. Control..

[27]  Riccardo Scattolini,et al.  Output feedback and tracking of nonlinear systems with model predictive control , 2001, Autom..

[28]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[29]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[30]  F. Allgöwer,et al.  A note on stability, robustness and performance of output feedback nonlinear model predictive control , 2003 .

[31]  A. C. Brooms,et al.  Efficient non-linear model based predictive control , 2001 .

[32]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..