‘Two-point’-bound supramolecular complexes from semi-rigidified dipyridine receptors and zinc porphyrins

[1]  C. Tung,et al.  Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines. , 2006, Angewandte Chemie.

[2]  Jeffrey S. Moore,et al.  The chain-length dependence test. , 2006, Accounts of chemical research.

[3]  Zhan-Ting Li,et al.  Hydrogen-bonding-driven preorganized zinc porphyrin receptors for efficient complexation of C60, C70, and C60 derivatives. , 2005, Journal of the American Chemical Society.

[4]  Zhan-Ting Li,et al.  F...H-N hydrogen bonding driven foldamers: efficient receptors for dialkylammonium ions. , 2005, Angewandte Chemie.

[5]  Zhan-Ting Li,et al.  Hydrogen bonding-mediated oligobenzamide foldamer receptors that efficiently bind a triol and saccharides in chloroform , 2005 .

[6]  Zhan-Ting Li,et al.  Hydrogen-bonding-induced oligoanthranilamide foldamers. Synthesis, characterization, and complexation for aliphatic ammonium ions , 2005 .

[7]  S. Shinkai,et al.  Supramolecular design of photocurrent-generating devices using fullerenes aimed at modelling artificial photosynthesis , 2005 .

[8]  Leonard J. Prins,et al.  Oligopeptide Foldamers: From Structure to Function , 2005 .

[9]  Y. Kobuke,et al.  Dynamic Supramolecular Porphyrin Systems , 2005 .

[10]  Jun-Li Hou,et al.  Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides. , 2004, Journal of the American Chemical Society.

[11]  Zhan-Ting Li,et al.  Hydrogen-bonding-induced planar, rigid, and zigzag oligoanthranilamides. Synthesis, characterization, and self-assembly of a metallocyclophane. , 2004, The Journal of organic chemistry.

[12]  R. P. Cheng,et al.  Beyond de novo protein design--de novo design of non-natural folded oligomers. , 2004, Current opinion in structural biology.

[13]  M. Gunter Superstructured Porphyrins as Effectors in Dynamic Supramolecular Assemblies: Receptors, Rotaxanes and Catenanes , 2004 .

[14]  Bing Gong,et al.  Well-defined secondary structures. , 2004, European journal of biochemistry.

[15]  Zhan-Ting Li,et al.  Hydrogen bond-induced rigid oligoanthranilamide ribbons that are planar and straight. , 2004, Organic letters.

[16]  Ivan Huc,et al.  Aromatic Oligoamide Foldamers , 2004 .

[17]  S. Ostrowski,et al.  Preparation of meso -Tetraarylporphyrins Nitrated in Two Neighboring Aromatic Rings , 2003 .

[18]  B. Gong,et al.  Evolution of Helical Foldamers , 2003 .

[19]  Carsten Schmuck,et al.  Molecules with helical structure: how to build a molecular spiral staircase. , 2003, Angewandte Chemie.

[20]  J. SantaLucia,et al.  THE SYNTHESIS OF ANTI-FIXED 3-METHYL-3- DEAZA-2′-DEOXYADENOSINE AND OTHER 3H-IMIDAZO[4,5-c]PYRIDINE ANALOGS , 2002, Nucleosides, nucleotides & nucleic acids.

[21]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[22]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[23]  B. Iverson,et al.  Models of higher-order structure: foldamers and beyond. , 2001, Current opinion in chemical biology.

[24]  B Gong,et al.  Crescent oligoamides: from acyclic "macrocycles" to folding nanotubes. , 2001, Chemistry.

[25]  A. Burrell,et al.  Synthetic routes to multiporphyrin arrays. , 2001, Chemical reviews.

[26]  P. Thordarson,et al.  Efficient formation of lipophilic dihydroxotin(IV) porphyrins and bis-porphyrins , 2001 .

[27]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[28]  Y. Hamuro,et al.  Novel Folding Patterns in a Family of Oligoanthranilamides: Non-Peptide Oligomers That Form Extended Helical Secondary Structures , 1997 .

[29]  D. Bremner,et al.  A COMPARISON OF METHODS FOR N-OXIDATION OF SOME 3-SUBSTITUTED PYRIDINES , 1997 .

[30]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[31]  K. A. Connors,et al.  Binding Constants: The Measurement of Molecular Complex Stability , 1987 .

[32]  G. Badger,et al.  Azaindoles. I. Introduction , 1964 .

[33]  E. Taylor,et al.  Pyridine-1-oxides. II. A New Synthesis of Ricinine1,2 , 1956 .